Metamath Proof Explorer


Theorem letop

Description: The topology of the extended reals. (Contributed by Mario Carneiro, 3-Sep-2015)

Ref Expression
Assertion letop ( ordTop ‘ ≤ ) ∈ Top

Proof

Step Hyp Ref Expression
1 letopon ( ordTop ‘ ≤ ) ∈ ( TopOn ‘ ℝ* )
2 1 topontopi ( ordTop ‘ ≤ ) ∈ Top