Metamath Proof Explorer


Theorem letopon

Description: The topology of the extended reals. (Contributed by Mario Carneiro, 3-Sep-2015)

Ref Expression
Assertion letopon ( ordTop ‘ ≤ ) ∈ ( TopOn ‘ ℝ* )

Proof

Step Hyp Ref Expression
1 letsr ≤ ∈ TosetRel
2 ledm * = dom ≤
3 2 ordttopon ( ≤ ∈ TosetRel → ( ordTop ‘ ≤ ) ∈ ( TopOn ‘ ℝ* ) )
4 1 3 ax-mp ( ordTop ‘ ≤ ) ∈ ( TopOn ‘ ℝ* )