Metamath Proof Explorer


Theorem letrii

Description: Trichotomy law for 'less than or equal to'. (Contributed by NM, 2-Aug-1999)

Ref Expression
Hypotheses lt.1 𝐴 ∈ ℝ
lt.2 𝐵 ∈ ℝ
Assertion letrii ( 𝐴𝐵𝐵𝐴 )

Proof

Step Hyp Ref Expression
1 lt.1 𝐴 ∈ ℝ
2 lt.2 𝐵 ∈ ℝ
3 2 1 ltnlei ( 𝐵 < 𝐴 ↔ ¬ 𝐴𝐵 )
4 2 1 ltlei ( 𝐵 < 𝐴𝐵𝐴 )
5 3 4 sylbir ( ¬ 𝐴𝐵𝐵𝐴 )
6 5 orri ( 𝐴𝐵𝐵𝐴 )