Metamath Proof Explorer
Description: Trichotomy law for 'less than or equal to'. (Contributed by NM, 2-Aug-1999)
|
|
Ref |
Expression |
|
Hypotheses |
lt.1 |
⊢ 𝐴 ∈ ℝ |
|
|
lt.2 |
⊢ 𝐵 ∈ ℝ |
|
Assertion |
letrii |
⊢ ( 𝐴 ≤ 𝐵 ∨ 𝐵 ≤ 𝐴 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
lt.1 |
⊢ 𝐴 ∈ ℝ |
2 |
|
lt.2 |
⊢ 𝐵 ∈ ℝ |
3 |
2 1
|
ltnlei |
⊢ ( 𝐵 < 𝐴 ↔ ¬ 𝐴 ≤ 𝐵 ) |
4 |
2 1
|
ltlei |
⊢ ( 𝐵 < 𝐴 → 𝐵 ≤ 𝐴 ) |
5 |
3 4
|
sylbir |
⊢ ( ¬ 𝐴 ≤ 𝐵 → 𝐵 ≤ 𝐴 ) |
6 |
5
|
orri |
⊢ ( 𝐴 ≤ 𝐵 ∨ 𝐵 ≤ 𝐴 ) |