| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ltp1 |
⊢ ( 𝐵 ∈ ℝ → 𝐵 < ( 𝐵 + 1 ) ) |
| 2 |
1
|
adantl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 𝐵 < ( 𝐵 + 1 ) ) |
| 3 |
|
peano2re |
⊢ ( 𝐵 ∈ ℝ → ( 𝐵 + 1 ) ∈ ℝ ) |
| 4 |
3
|
ancli |
⊢ ( 𝐵 ∈ ℝ → ( 𝐵 ∈ ℝ ∧ ( 𝐵 + 1 ) ∈ ℝ ) ) |
| 5 |
|
lelttr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐵 + 1 ) ∈ ℝ ) → ( ( 𝐴 ≤ 𝐵 ∧ 𝐵 < ( 𝐵 + 1 ) ) → 𝐴 < ( 𝐵 + 1 ) ) ) |
| 6 |
5
|
3expb |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ ( 𝐵 + 1 ) ∈ ℝ ) ) → ( ( 𝐴 ≤ 𝐵 ∧ 𝐵 < ( 𝐵 + 1 ) ) → 𝐴 < ( 𝐵 + 1 ) ) ) |
| 7 |
4 6
|
sylan2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 ≤ 𝐵 ∧ 𝐵 < ( 𝐵 + 1 ) ) → 𝐴 < ( 𝐵 + 1 ) ) ) |
| 8 |
2 7
|
mpan2d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 ≤ 𝐵 → 𝐴 < ( 𝐵 + 1 ) ) ) |
| 9 |
8
|
3impia |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → 𝐴 < ( 𝐵 + 1 ) ) |
| 10 |
|
ltle |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 + 1 ) ∈ ℝ ) → ( 𝐴 < ( 𝐵 + 1 ) → 𝐴 ≤ ( 𝐵 + 1 ) ) ) |
| 11 |
3 10
|
sylan2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < ( 𝐵 + 1 ) → 𝐴 ≤ ( 𝐵 + 1 ) ) ) |
| 12 |
11
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( 𝐴 < ( 𝐵 + 1 ) → 𝐴 ≤ ( 𝐵 + 1 ) ) ) |
| 13 |
9 12
|
mpd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → 𝐴 ≤ ( 𝐵 + 1 ) ) |