Metamath Proof Explorer


Theorem letsr

Description: The "less than or equal to" relationship on the extended reals is a toset. (Contributed by FL, 2-Aug-2009) (Revised by Mario Carneiro, 3-Sep-2015)

Ref Expression
Assertion letsr ≤ ∈ TosetRel

Proof

Step Hyp Ref Expression
1 lerel Rel ≤
2 lerelxr ≤ ⊆ ( ℝ* × ℝ* )
3 2 brel ( 𝑥𝑦 → ( 𝑥 ∈ ℝ*𝑦 ∈ ℝ* ) )
4 3 adantr ( ( 𝑥𝑦𝑦𝑧 ) → ( 𝑥 ∈ ℝ*𝑦 ∈ ℝ* ) )
5 4 simpld ( ( 𝑥𝑦𝑦𝑧 ) → 𝑥 ∈ ℝ* )
6 4 simprd ( ( 𝑥𝑦𝑦𝑧 ) → 𝑦 ∈ ℝ* )
7 2 brel ( 𝑦𝑧 → ( 𝑦 ∈ ℝ*𝑧 ∈ ℝ* ) )
8 7 simprd ( 𝑦𝑧𝑧 ∈ ℝ* )
9 8 adantl ( ( 𝑥𝑦𝑦𝑧 ) → 𝑧 ∈ ℝ* )
10 5 6 9 3jca ( ( 𝑥𝑦𝑦𝑧 ) → ( 𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ* ) )
11 xrletr ( ( 𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ* ) → ( ( 𝑥𝑦𝑦𝑧 ) → 𝑥𝑧 ) )
12 10 11 mpcom ( ( 𝑥𝑦𝑦𝑧 ) → 𝑥𝑧 )
13 12 ax-gen 𝑧 ( ( 𝑥𝑦𝑦𝑧 ) → 𝑥𝑧 )
14 13 gen2 𝑥𝑦𝑧 ( ( 𝑥𝑦𝑦𝑧 ) → 𝑥𝑧 )
15 cotr ( ( ≤ ∘ ≤ ) ⊆ ≤ ↔ ∀ 𝑥𝑦𝑧 ( ( 𝑥𝑦𝑦𝑧 ) → 𝑥𝑧 ) )
16 14 15 mpbir ( ≤ ∘ ≤ ) ⊆ ≤
17 asymref ( ( ≤ ∩ ≤ ) = ( I ↾ ≤ ) ↔ ∀ 𝑥 ≤ ∀ 𝑦 ( ( 𝑥𝑦𝑦𝑥 ) ↔ 𝑥 = 𝑦 ) )
18 simpr ( ( 𝑥 ∈ ℝ* ∧ ( 𝑥𝑦𝑦𝑥 ) ) → ( 𝑥𝑦𝑦𝑥 ) )
19 2 brel ( 𝑦𝑥 → ( 𝑦 ∈ ℝ*𝑥 ∈ ℝ* ) )
20 19 simpld ( 𝑦𝑥𝑦 ∈ ℝ* )
21 20 adantl ( ( 𝑥𝑦𝑦𝑥 ) → 𝑦 ∈ ℝ* )
22 xrletri3 ( ( 𝑥 ∈ ℝ*𝑦 ∈ ℝ* ) → ( 𝑥 = 𝑦 ↔ ( 𝑥𝑦𝑦𝑥 ) ) )
23 21 22 sylan2 ( ( 𝑥 ∈ ℝ* ∧ ( 𝑥𝑦𝑦𝑥 ) ) → ( 𝑥 = 𝑦 ↔ ( 𝑥𝑦𝑦𝑥 ) ) )
24 18 23 mpbird ( ( 𝑥 ∈ ℝ* ∧ ( 𝑥𝑦𝑦𝑥 ) ) → 𝑥 = 𝑦 )
25 24 ex ( 𝑥 ∈ ℝ* → ( ( 𝑥𝑦𝑦𝑥 ) → 𝑥 = 𝑦 ) )
26 xrleid ( 𝑥 ∈ ℝ*𝑥𝑥 )
27 26 26 jca ( 𝑥 ∈ ℝ* → ( 𝑥𝑥𝑥𝑥 ) )
28 breq2 ( 𝑥 = 𝑦 → ( 𝑥𝑥𝑥𝑦 ) )
29 breq1 ( 𝑥 = 𝑦 → ( 𝑥𝑥𝑦𝑥 ) )
30 28 29 anbi12d ( 𝑥 = 𝑦 → ( ( 𝑥𝑥𝑥𝑥 ) ↔ ( 𝑥𝑦𝑦𝑥 ) ) )
31 27 30 syl5ibcom ( 𝑥 ∈ ℝ* → ( 𝑥 = 𝑦 → ( 𝑥𝑦𝑦𝑥 ) ) )
32 25 31 impbid ( 𝑥 ∈ ℝ* → ( ( 𝑥𝑦𝑦𝑥 ) ↔ 𝑥 = 𝑦 ) )
33 32 alrimiv ( 𝑥 ∈ ℝ* → ∀ 𝑦 ( ( 𝑥𝑦𝑦𝑥 ) ↔ 𝑥 = 𝑦 ) )
34 lefld * =
35 34 eqcomi ≤ = ℝ*
36 33 35 eleq2s ( 𝑥 ≤ → ∀ 𝑦 ( ( 𝑥𝑦𝑦𝑥 ) ↔ 𝑥 = 𝑦 ) )
37 17 36 mprgbir ( ≤ ∩ ≤ ) = ( I ↾ ≤ )
38 xrex * ∈ V
39 38 38 xpex ( ℝ* × ℝ* ) ∈ V
40 39 2 ssexi ≤ ∈ V
41 isps ( ≤ ∈ V → ( ≤ ∈ PosetRel ↔ ( Rel ≤ ∧ ( ≤ ∘ ≤ ) ⊆ ≤ ∧ ( ≤ ∩ ≤ ) = ( I ↾ ≤ ) ) ) )
42 40 41 ax-mp ( ≤ ∈ PosetRel ↔ ( Rel ≤ ∧ ( ≤ ∘ ≤ ) ⊆ ≤ ∧ ( ≤ ∩ ≤ ) = ( I ↾ ≤ ) ) )
43 1 16 37 42 mpbir3an ≤ ∈ PosetRel
44 xrletri ( ( 𝑥 ∈ ℝ*𝑦 ∈ ℝ* ) → ( 𝑥𝑦𝑦𝑥 ) )
45 44 rgen2 𝑥 ∈ ℝ*𝑦 ∈ ℝ* ( 𝑥𝑦𝑦𝑥 )
46 qfto ( ( ℝ* × ℝ* ) ⊆ ( ≤ ∪ ≤ ) ↔ ∀ 𝑥 ∈ ℝ*𝑦 ∈ ℝ* ( 𝑥𝑦𝑦𝑥 ) )
47 45 46 mpbir ( ℝ* × ℝ* ) ⊆ ( ≤ ∪ ≤ )
48 ledm * = dom ≤
49 48 istsr ( ≤ ∈ TosetRel ↔ ( ≤ ∈ PosetRel ∧ ( ℝ* × ℝ* ) ⊆ ( ≤ ∪ ≤ ) ) )
50 43 47 49 mpbir2an ≤ ∈ TosetRel