Step |
Hyp |
Ref |
Expression |
1 |
|
lerel |
⊢ Rel ≤ |
2 |
|
lerelxr |
⊢ ≤ ⊆ ( ℝ* × ℝ* ) |
3 |
2
|
brel |
⊢ ( 𝑥 ≤ 𝑦 → ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ) |
4 |
3
|
adantr |
⊢ ( ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧 ) → ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ) |
5 |
4
|
simpld |
⊢ ( ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧 ) → 𝑥 ∈ ℝ* ) |
6 |
4
|
simprd |
⊢ ( ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧 ) → 𝑦 ∈ ℝ* ) |
7 |
2
|
brel |
⊢ ( 𝑦 ≤ 𝑧 → ( 𝑦 ∈ ℝ* ∧ 𝑧 ∈ ℝ* ) ) |
8 |
7
|
simprd |
⊢ ( 𝑦 ≤ 𝑧 → 𝑧 ∈ ℝ* ) |
9 |
8
|
adantl |
⊢ ( ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧 ) → 𝑧 ∈ ℝ* ) |
10 |
5 6 9
|
3jca |
⊢ ( ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧 ) → ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ∧ 𝑧 ∈ ℝ* ) ) |
11 |
|
xrletr |
⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ∧ 𝑧 ∈ ℝ* ) → ( ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧 ) → 𝑥 ≤ 𝑧 ) ) |
12 |
10 11
|
mpcom |
⊢ ( ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧 ) → 𝑥 ≤ 𝑧 ) |
13 |
12
|
ax-gen |
⊢ ∀ 𝑧 ( ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧 ) → 𝑥 ≤ 𝑧 ) |
14 |
13
|
gen2 |
⊢ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧 ) → 𝑥 ≤ 𝑧 ) |
15 |
|
cotr |
⊢ ( ( ≤ ∘ ≤ ) ⊆ ≤ ↔ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧 ) → 𝑥 ≤ 𝑧 ) ) |
16 |
14 15
|
mpbir |
⊢ ( ≤ ∘ ≤ ) ⊆ ≤ |
17 |
|
asymref |
⊢ ( ( ≤ ∩ ◡ ≤ ) = ( I ↾ ∪ ∪ ≤ ) ↔ ∀ 𝑥 ∈ ∪ ∪ ≤ ∀ 𝑦 ( ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥 ) ↔ 𝑥 = 𝑦 ) ) |
18 |
|
simpr |
⊢ ( ( 𝑥 ∈ ℝ* ∧ ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥 ) ) → ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥 ) ) |
19 |
2
|
brel |
⊢ ( 𝑦 ≤ 𝑥 → ( 𝑦 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ) ) |
20 |
19
|
simpld |
⊢ ( 𝑦 ≤ 𝑥 → 𝑦 ∈ ℝ* ) |
21 |
20
|
adantl |
⊢ ( ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥 ) → 𝑦 ∈ ℝ* ) |
22 |
|
xrletri3 |
⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → ( 𝑥 = 𝑦 ↔ ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥 ) ) ) |
23 |
21 22
|
sylan2 |
⊢ ( ( 𝑥 ∈ ℝ* ∧ ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥 ) ) → ( 𝑥 = 𝑦 ↔ ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥 ) ) ) |
24 |
18 23
|
mpbird |
⊢ ( ( 𝑥 ∈ ℝ* ∧ ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥 ) ) → 𝑥 = 𝑦 ) |
25 |
24
|
ex |
⊢ ( 𝑥 ∈ ℝ* → ( ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥 ) → 𝑥 = 𝑦 ) ) |
26 |
|
xrleid |
⊢ ( 𝑥 ∈ ℝ* → 𝑥 ≤ 𝑥 ) |
27 |
26 26
|
jca |
⊢ ( 𝑥 ∈ ℝ* → ( 𝑥 ≤ 𝑥 ∧ 𝑥 ≤ 𝑥 ) ) |
28 |
|
breq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ≤ 𝑥 ↔ 𝑥 ≤ 𝑦 ) ) |
29 |
|
breq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ≤ 𝑥 ↔ 𝑦 ≤ 𝑥 ) ) |
30 |
28 29
|
anbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ≤ 𝑥 ∧ 𝑥 ≤ 𝑥 ) ↔ ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥 ) ) ) |
31 |
27 30
|
syl5ibcom |
⊢ ( 𝑥 ∈ ℝ* → ( 𝑥 = 𝑦 → ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥 ) ) ) |
32 |
25 31
|
impbid |
⊢ ( 𝑥 ∈ ℝ* → ( ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥 ) ↔ 𝑥 = 𝑦 ) ) |
33 |
32
|
alrimiv |
⊢ ( 𝑥 ∈ ℝ* → ∀ 𝑦 ( ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥 ) ↔ 𝑥 = 𝑦 ) ) |
34 |
|
lefld |
⊢ ℝ* = ∪ ∪ ≤ |
35 |
34
|
eqcomi |
⊢ ∪ ∪ ≤ = ℝ* |
36 |
33 35
|
eleq2s |
⊢ ( 𝑥 ∈ ∪ ∪ ≤ → ∀ 𝑦 ( ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥 ) ↔ 𝑥 = 𝑦 ) ) |
37 |
17 36
|
mprgbir |
⊢ ( ≤ ∩ ◡ ≤ ) = ( I ↾ ∪ ∪ ≤ ) |
38 |
|
xrex |
⊢ ℝ* ∈ V |
39 |
38 38
|
xpex |
⊢ ( ℝ* × ℝ* ) ∈ V |
40 |
39 2
|
ssexi |
⊢ ≤ ∈ V |
41 |
|
isps |
⊢ ( ≤ ∈ V → ( ≤ ∈ PosetRel ↔ ( Rel ≤ ∧ ( ≤ ∘ ≤ ) ⊆ ≤ ∧ ( ≤ ∩ ◡ ≤ ) = ( I ↾ ∪ ∪ ≤ ) ) ) ) |
42 |
40 41
|
ax-mp |
⊢ ( ≤ ∈ PosetRel ↔ ( Rel ≤ ∧ ( ≤ ∘ ≤ ) ⊆ ≤ ∧ ( ≤ ∩ ◡ ≤ ) = ( I ↾ ∪ ∪ ≤ ) ) ) |
43 |
1 16 37 42
|
mpbir3an |
⊢ ≤ ∈ PosetRel |
44 |
|
xrletri |
⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → ( 𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥 ) ) |
45 |
44
|
rgen2 |
⊢ ∀ 𝑥 ∈ ℝ* ∀ 𝑦 ∈ ℝ* ( 𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥 ) |
46 |
|
qfto |
⊢ ( ( ℝ* × ℝ* ) ⊆ ( ≤ ∪ ◡ ≤ ) ↔ ∀ 𝑥 ∈ ℝ* ∀ 𝑦 ∈ ℝ* ( 𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥 ) ) |
47 |
45 46
|
mpbir |
⊢ ( ℝ* × ℝ* ) ⊆ ( ≤ ∪ ◡ ≤ ) |
48 |
|
ledm |
⊢ ℝ* = dom ≤ |
49 |
48
|
istsr |
⊢ ( ≤ ∈ TosetRel ↔ ( ≤ ∈ PosetRel ∧ ( ℝ* × ℝ* ) ⊆ ( ≤ ∪ ◡ ≤ ) ) ) |
50 |
43 47 49
|
mpbir2an |
⊢ ≤ ∈ TosetRel |