Step |
Hyp |
Ref |
Expression |
1 |
|
lfuhgrnloopv.i |
⊢ 𝐼 = ( iEdg ‘ 𝐺 ) |
2 |
|
lfuhgrnloopv.a |
⊢ 𝐴 = dom 𝐼 |
3 |
|
lfuhgrnloopv.e |
⊢ 𝐸 = { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } |
4 |
|
eqid |
⊢ 𝐴 = 𝐴 |
5 |
4 3
|
feq23i |
⊢ ( 𝐼 : 𝐴 ⟶ 𝐸 ↔ 𝐼 : 𝐴 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ) |
6 |
5
|
biimpi |
⊢ ( 𝐼 : 𝐴 ⟶ 𝐸 → 𝐼 : 𝐴 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ) |
7 |
6
|
ffvelrnda |
⊢ ( ( 𝐼 : 𝐴 ⟶ 𝐸 ∧ 𝑋 ∈ 𝐴 ) → ( 𝐼 ‘ 𝑋 ) ∈ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ) |
8 |
|
fveq2 |
⊢ ( 𝑦 = ( 𝐼 ‘ 𝑋 ) → ( ♯ ‘ 𝑦 ) = ( ♯ ‘ ( 𝐼 ‘ 𝑋 ) ) ) |
9 |
8
|
breq2d |
⊢ ( 𝑦 = ( 𝐼 ‘ 𝑋 ) → ( 2 ≤ ( ♯ ‘ 𝑦 ) ↔ 2 ≤ ( ♯ ‘ ( 𝐼 ‘ 𝑋 ) ) ) ) |
10 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( ♯ ‘ 𝑥 ) = ( ♯ ‘ 𝑦 ) ) |
11 |
10
|
breq2d |
⊢ ( 𝑥 = 𝑦 → ( 2 ≤ ( ♯ ‘ 𝑥 ) ↔ 2 ≤ ( ♯ ‘ 𝑦 ) ) ) |
12 |
11
|
cbvrabv |
⊢ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } = { 𝑦 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑦 ) } |
13 |
9 12
|
elrab2 |
⊢ ( ( 𝐼 ‘ 𝑋 ) ∈ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ↔ ( ( 𝐼 ‘ 𝑋 ) ∈ 𝒫 𝑉 ∧ 2 ≤ ( ♯ ‘ ( 𝐼 ‘ 𝑋 ) ) ) ) |
14 |
13
|
simprbi |
⊢ ( ( 𝐼 ‘ 𝑋 ) ∈ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } → 2 ≤ ( ♯ ‘ ( 𝐼 ‘ 𝑋 ) ) ) |
15 |
7 14
|
syl |
⊢ ( ( 𝐼 : 𝐴 ⟶ 𝐸 ∧ 𝑋 ∈ 𝐴 ) → 2 ≤ ( ♯ ‘ ( 𝐼 ‘ 𝑋 ) ) ) |