Step |
Hyp |
Ref |
Expression |
1 |
|
lfuhgrnloopv.i |
⊢ 𝐼 = ( iEdg ‘ 𝐺 ) |
2 |
|
lfuhgrnloopv.a |
⊢ 𝐴 = dom 𝐼 |
3 |
|
lfuhgrnloopv.e |
⊢ 𝐸 = { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } |
4 |
|
nfcv |
⊢ Ⅎ 𝑥 𝐼 |
5 |
|
nfcv |
⊢ Ⅎ 𝑥 𝐴 |
6 |
|
nfrab1 |
⊢ Ⅎ 𝑥 { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } |
7 |
3 6
|
nfcxfr |
⊢ Ⅎ 𝑥 𝐸 |
8 |
4 5 7
|
nff |
⊢ Ⅎ 𝑥 𝐼 : 𝐴 ⟶ 𝐸 |
9 |
|
hashsn01 |
⊢ ( ( ♯ ‘ { 𝑈 } ) = 0 ∨ ( ♯ ‘ { 𝑈 } ) = 1 ) |
10 |
|
2pos |
⊢ 0 < 2 |
11 |
|
0re |
⊢ 0 ∈ ℝ |
12 |
|
2re |
⊢ 2 ∈ ℝ |
13 |
11 12
|
ltnlei |
⊢ ( 0 < 2 ↔ ¬ 2 ≤ 0 ) |
14 |
10 13
|
mpbi |
⊢ ¬ 2 ≤ 0 |
15 |
|
breq2 |
⊢ ( ( ♯ ‘ { 𝑈 } ) = 0 → ( 2 ≤ ( ♯ ‘ { 𝑈 } ) ↔ 2 ≤ 0 ) ) |
16 |
14 15
|
mtbiri |
⊢ ( ( ♯ ‘ { 𝑈 } ) = 0 → ¬ 2 ≤ ( ♯ ‘ { 𝑈 } ) ) |
17 |
|
1lt2 |
⊢ 1 < 2 |
18 |
|
1re |
⊢ 1 ∈ ℝ |
19 |
18 12
|
ltnlei |
⊢ ( 1 < 2 ↔ ¬ 2 ≤ 1 ) |
20 |
17 19
|
mpbi |
⊢ ¬ 2 ≤ 1 |
21 |
|
breq2 |
⊢ ( ( ♯ ‘ { 𝑈 } ) = 1 → ( 2 ≤ ( ♯ ‘ { 𝑈 } ) ↔ 2 ≤ 1 ) ) |
22 |
20 21
|
mtbiri |
⊢ ( ( ♯ ‘ { 𝑈 } ) = 1 → ¬ 2 ≤ ( ♯ ‘ { 𝑈 } ) ) |
23 |
16 22
|
jaoi |
⊢ ( ( ( ♯ ‘ { 𝑈 } ) = 0 ∨ ( ♯ ‘ { 𝑈 } ) = 1 ) → ¬ 2 ≤ ( ♯ ‘ { 𝑈 } ) ) |
24 |
9 23
|
ax-mp |
⊢ ¬ 2 ≤ ( ♯ ‘ { 𝑈 } ) |
25 |
|
fveq2 |
⊢ ( ( 𝐼 ‘ 𝑥 ) = { 𝑈 } → ( ♯ ‘ ( 𝐼 ‘ 𝑥 ) ) = ( ♯ ‘ { 𝑈 } ) ) |
26 |
25
|
breq2d |
⊢ ( ( 𝐼 ‘ 𝑥 ) = { 𝑈 } → ( 2 ≤ ( ♯ ‘ ( 𝐼 ‘ 𝑥 ) ) ↔ 2 ≤ ( ♯ ‘ { 𝑈 } ) ) ) |
27 |
24 26
|
mtbiri |
⊢ ( ( 𝐼 ‘ 𝑥 ) = { 𝑈 } → ¬ 2 ≤ ( ♯ ‘ ( 𝐼 ‘ 𝑥 ) ) ) |
28 |
1 2 3
|
lfgredgge2 |
⊢ ( ( 𝐼 : 𝐴 ⟶ 𝐸 ∧ 𝑥 ∈ 𝐴 ) → 2 ≤ ( ♯ ‘ ( 𝐼 ‘ 𝑥 ) ) ) |
29 |
27 28
|
nsyl3 |
⊢ ( ( 𝐼 : 𝐴 ⟶ 𝐸 ∧ 𝑥 ∈ 𝐴 ) → ¬ ( 𝐼 ‘ 𝑥 ) = { 𝑈 } ) |
30 |
29
|
ex |
⊢ ( 𝐼 : 𝐴 ⟶ 𝐸 → ( 𝑥 ∈ 𝐴 → ¬ ( 𝐼 ‘ 𝑥 ) = { 𝑈 } ) ) |
31 |
8 30
|
ralrimi |
⊢ ( 𝐼 : 𝐴 ⟶ 𝐸 → ∀ 𝑥 ∈ 𝐴 ¬ ( 𝐼 ‘ 𝑥 ) = { 𝑈 } ) |
32 |
|
rabeq0 |
⊢ ( { 𝑥 ∈ 𝐴 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑈 } } = ∅ ↔ ∀ 𝑥 ∈ 𝐴 ¬ ( 𝐼 ‘ 𝑥 ) = { 𝑈 } ) |
33 |
31 32
|
sylibr |
⊢ ( 𝐼 : 𝐴 ⟶ 𝐸 → { 𝑥 ∈ 𝐴 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑈 } } = ∅ ) |