Step |
Hyp |
Ref |
Expression |
1 |
|
lfgrwlkprop.i |
⊢ 𝐼 = ( iEdg ‘ 𝐺 ) |
2 |
|
wlkv |
⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( 𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) |
3 |
|
eqid |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) |
4 |
3 1
|
iswlk |
⊢ ( ( 𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V ) → ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ↔ ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) ) |
5 |
2 4
|
syl |
⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ↔ ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) ) |
6 |
|
ifptru |
⊢ ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) → ( if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ↔ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } ) ) |
7 |
6
|
adantr |
⊢ ( ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∧ ( ( ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) ∧ 𝐼 : dom 𝐼 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ) ∧ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) → ( if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ↔ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } ) ) |
8 |
|
simplr |
⊢ ( ( ( ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) ∧ 𝐼 : dom 𝐼 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ) ∧ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → 𝐼 : dom 𝐼 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ) |
9 |
|
wrdsymbcl |
⊢ ( ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝐹 ‘ 𝑘 ) ∈ dom 𝐼 ) |
10 |
9
|
ad4ant14 |
⊢ ( ( ( ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) ∧ 𝐼 : dom 𝐼 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ) ∧ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝐹 ‘ 𝑘 ) ∈ dom 𝐼 ) |
11 |
8 10
|
ffvelrnd |
⊢ ( ( ( ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) ∧ 𝐼 : dom 𝐼 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ) ∧ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ) |
12 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) → ( ♯ ‘ 𝑥 ) = ( ♯ ‘ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) |
13 |
12
|
breq2d |
⊢ ( 𝑥 = ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) → ( 2 ≤ ( ♯ ‘ 𝑥 ) ↔ 2 ≤ ( ♯ ‘ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) |
14 |
13
|
elrab |
⊢ ( ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ↔ ( ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ 𝒫 𝑉 ∧ 2 ≤ ( ♯ ‘ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) |
15 |
|
fveq2 |
⊢ ( ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } → ( ♯ ‘ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) = ( ♯ ‘ { ( 𝑃 ‘ 𝑘 ) } ) ) |
16 |
15
|
breq2d |
⊢ ( ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } → ( 2 ≤ ( ♯ ‘ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ↔ 2 ≤ ( ♯ ‘ { ( 𝑃 ‘ 𝑘 ) } ) ) ) |
17 |
|
fvex |
⊢ ( 𝑃 ‘ 𝑘 ) ∈ V |
18 |
|
hashsng |
⊢ ( ( 𝑃 ‘ 𝑘 ) ∈ V → ( ♯ ‘ { ( 𝑃 ‘ 𝑘 ) } ) = 1 ) |
19 |
17 18
|
ax-mp |
⊢ ( ♯ ‘ { ( 𝑃 ‘ 𝑘 ) } ) = 1 |
20 |
19
|
breq2i |
⊢ ( 2 ≤ ( ♯ ‘ { ( 𝑃 ‘ 𝑘 ) } ) ↔ 2 ≤ 1 ) |
21 |
|
1lt2 |
⊢ 1 < 2 |
22 |
|
1re |
⊢ 1 ∈ ℝ |
23 |
|
2re |
⊢ 2 ∈ ℝ |
24 |
22 23
|
ltnlei |
⊢ ( 1 < 2 ↔ ¬ 2 ≤ 1 ) |
25 |
|
pm2.21 |
⊢ ( ¬ 2 ≤ 1 → ( 2 ≤ 1 → ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) ) |
26 |
24 25
|
sylbi |
⊢ ( 1 < 2 → ( 2 ≤ 1 → ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) ) |
27 |
21 26
|
ax-mp |
⊢ ( 2 ≤ 1 → ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) |
28 |
20 27
|
sylbi |
⊢ ( 2 ≤ ( ♯ ‘ { ( 𝑃 ‘ 𝑘 ) } ) → ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) |
29 |
16 28
|
syl6bi |
⊢ ( ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } → ( 2 ≤ ( ♯ ‘ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) → ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) ) |
30 |
29
|
com12 |
⊢ ( 2 ≤ ( ♯ ‘ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) → ( ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } → ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) ) |
31 |
30
|
adantl |
⊢ ( ( ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ 𝒫 𝑉 ∧ 2 ≤ ( ♯ ‘ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) → ( ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } → ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) ) |
32 |
31
|
a1i |
⊢ ( ( ( ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) ∧ 𝐼 : dom 𝐼 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ) ∧ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ 𝒫 𝑉 ∧ 2 ≤ ( ♯ ‘ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) → ( ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } → ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) ) ) |
33 |
14 32
|
syl5bi |
⊢ ( ( ( ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) ∧ 𝐼 : dom 𝐼 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ) ∧ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } → ( ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } → ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) ) ) |
34 |
11 33
|
mpd |
⊢ ( ( ( ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) ∧ 𝐼 : dom 𝐼 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ) ∧ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } → ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) ) |
35 |
34
|
adantl |
⊢ ( ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∧ ( ( ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) ∧ 𝐼 : dom 𝐼 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ) ∧ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) → ( ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } → ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) ) |
36 |
7 35
|
sylbid |
⊢ ( ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∧ ( ( ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) ∧ 𝐼 : dom 𝐼 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ) ∧ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) → ( if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) → ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) ) |
37 |
36
|
ex |
⊢ ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) → ( ( ( ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) ∧ 𝐼 : dom 𝐼 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ) ∧ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) → ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) ) ) |
38 |
|
neqne |
⊢ ( ¬ ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) → ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) |
39 |
38
|
2a1d |
⊢ ( ¬ ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) → ( ( ( ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) ∧ 𝐼 : dom 𝐼 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ) ∧ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) → ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) ) ) |
40 |
37 39
|
pm2.61i |
⊢ ( ( ( ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) ∧ 𝐼 : dom 𝐼 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ) ∧ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) → ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) ) |
41 |
40
|
ralimdva |
⊢ ( ( ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) ∧ 𝐼 : dom 𝐼 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ) → ( ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) → ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) ) |
42 |
41
|
ex |
⊢ ( ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) → ( 𝐼 : dom 𝐼 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } → ( ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) → ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) ) ) |
43 |
42
|
com23 |
⊢ ( ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) → ( ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) → ( 𝐼 : dom 𝐼 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } → ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) ) ) |
44 |
43
|
3impia |
⊢ ( ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) → ( 𝐼 : dom 𝐼 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } → ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) ) |
45 |
5 44
|
syl6bi |
⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( 𝐼 : dom 𝐼 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } → ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) ) ) |
46 |
45
|
pm2.43i |
⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( 𝐼 : dom 𝐼 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } → ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) ) |
47 |
46
|
imp |
⊢ ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ 𝐼 : dom 𝐼 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ) → ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) |