Metamath Proof Explorer


Theorem lflvsdi2

Description: Reverse distributive law for (right vector space) scalar product of functionals. (Contributed by NM, 19-Oct-2014)

Ref Expression
Hypotheses lfldi.v 𝑉 = ( Base ‘ 𝑊 )
lfldi.r 𝑅 = ( Scalar ‘ 𝑊 )
lfldi.k 𝐾 = ( Base ‘ 𝑅 )
lfldi.p + = ( +g𝑅 )
lfldi.t · = ( .r𝑅 )
lfldi.f 𝐹 = ( LFnl ‘ 𝑊 )
lfldi.w ( 𝜑𝑊 ∈ LMod )
lfldi.x ( 𝜑𝑋𝐾 )
lfldi2.y ( 𝜑𝑌𝐾 )
lfldi2.g ( 𝜑𝐺𝐹 )
Assertion lflvsdi2 ( 𝜑 → ( 𝐺f · ( ( 𝑉 × { 𝑋 } ) ∘f + ( 𝑉 × { 𝑌 } ) ) ) = ( ( 𝐺f · ( 𝑉 × { 𝑋 } ) ) ∘f + ( 𝐺f · ( 𝑉 × { 𝑌 } ) ) ) )

Proof

Step Hyp Ref Expression
1 lfldi.v 𝑉 = ( Base ‘ 𝑊 )
2 lfldi.r 𝑅 = ( Scalar ‘ 𝑊 )
3 lfldi.k 𝐾 = ( Base ‘ 𝑅 )
4 lfldi.p + = ( +g𝑅 )
5 lfldi.t · = ( .r𝑅 )
6 lfldi.f 𝐹 = ( LFnl ‘ 𝑊 )
7 lfldi.w ( 𝜑𝑊 ∈ LMod )
8 lfldi.x ( 𝜑𝑋𝐾 )
9 lfldi2.y ( 𝜑𝑌𝐾 )
10 lfldi2.g ( 𝜑𝐺𝐹 )
11 1 fvexi 𝑉 ∈ V
12 11 a1i ( 𝜑𝑉 ∈ V )
13 2 3 1 6 lflf ( ( 𝑊 ∈ LMod ∧ 𝐺𝐹 ) → 𝐺 : 𝑉𝐾 )
14 7 10 13 syl2anc ( 𝜑𝐺 : 𝑉𝐾 )
15 fconst6g ( 𝑋𝐾 → ( 𝑉 × { 𝑋 } ) : 𝑉𝐾 )
16 8 15 syl ( 𝜑 → ( 𝑉 × { 𝑋 } ) : 𝑉𝐾 )
17 fconst6g ( 𝑌𝐾 → ( 𝑉 × { 𝑌 } ) : 𝑉𝐾 )
18 9 17 syl ( 𝜑 → ( 𝑉 × { 𝑌 } ) : 𝑉𝐾 )
19 2 lmodring ( 𝑊 ∈ LMod → 𝑅 ∈ Ring )
20 7 19 syl ( 𝜑𝑅 ∈ Ring )
21 3 4 5 ringdi ( ( 𝑅 ∈ Ring ∧ ( 𝑥𝐾𝑦𝐾𝑧𝐾 ) ) → ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) )
22 20 21 sylan ( ( 𝜑 ∧ ( 𝑥𝐾𝑦𝐾𝑧𝐾 ) ) → ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) )
23 12 14 16 18 22 caofdi ( 𝜑 → ( 𝐺f · ( ( 𝑉 × { 𝑋 } ) ∘f + ( 𝑉 × { 𝑌 } ) ) ) = ( ( 𝐺f · ( 𝑉 × { 𝑋 } ) ) ∘f + ( 𝐺f · ( 𝑉 × { 𝑌 } ) ) ) )