Step |
Hyp |
Ref |
Expression |
1 |
|
lfuhgr1v0e.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
lfuhgr1v0e.i |
⊢ 𝐼 = ( iEdg ‘ 𝐺 ) |
3 |
|
lfuhgr1v0e.e |
⊢ 𝐸 = { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } |
4 |
2
|
a1i |
⊢ ( ( 𝐺 ∈ UHGraph ∧ ( ♯ ‘ 𝑉 ) = 1 ) → 𝐼 = ( iEdg ‘ 𝐺 ) ) |
5 |
2
|
dmeqi |
⊢ dom 𝐼 = dom ( iEdg ‘ 𝐺 ) |
6 |
5
|
a1i |
⊢ ( ( 𝐺 ∈ UHGraph ∧ ( ♯ ‘ 𝑉 ) = 1 ) → dom 𝐼 = dom ( iEdg ‘ 𝐺 ) ) |
7 |
1
|
fvexi |
⊢ 𝑉 ∈ V |
8 |
|
hash1snb |
⊢ ( 𝑉 ∈ V → ( ( ♯ ‘ 𝑉 ) = 1 ↔ ∃ 𝑣 𝑉 = { 𝑣 } ) ) |
9 |
7 8
|
ax-mp |
⊢ ( ( ♯ ‘ 𝑉 ) = 1 ↔ ∃ 𝑣 𝑉 = { 𝑣 } ) |
10 |
|
pweq |
⊢ ( 𝑉 = { 𝑣 } → 𝒫 𝑉 = 𝒫 { 𝑣 } ) |
11 |
10
|
rabeqdv |
⊢ ( 𝑉 = { 𝑣 } → { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } = { 𝑥 ∈ 𝒫 { 𝑣 } ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ) |
12 |
|
2pos |
⊢ 0 < 2 |
13 |
|
0re |
⊢ 0 ∈ ℝ |
14 |
|
2re |
⊢ 2 ∈ ℝ |
15 |
13 14
|
ltnlei |
⊢ ( 0 < 2 ↔ ¬ 2 ≤ 0 ) |
16 |
12 15
|
mpbi |
⊢ ¬ 2 ≤ 0 |
17 |
|
1lt2 |
⊢ 1 < 2 |
18 |
|
1re |
⊢ 1 ∈ ℝ |
19 |
18 14
|
ltnlei |
⊢ ( 1 < 2 ↔ ¬ 2 ≤ 1 ) |
20 |
17 19
|
mpbi |
⊢ ¬ 2 ≤ 1 |
21 |
|
0ex |
⊢ ∅ ∈ V |
22 |
|
snex |
⊢ { 𝑣 } ∈ V |
23 |
|
fveq2 |
⊢ ( 𝑥 = ∅ → ( ♯ ‘ 𝑥 ) = ( ♯ ‘ ∅ ) ) |
24 |
|
hash0 |
⊢ ( ♯ ‘ ∅ ) = 0 |
25 |
23 24
|
eqtrdi |
⊢ ( 𝑥 = ∅ → ( ♯ ‘ 𝑥 ) = 0 ) |
26 |
25
|
breq2d |
⊢ ( 𝑥 = ∅ → ( 2 ≤ ( ♯ ‘ 𝑥 ) ↔ 2 ≤ 0 ) ) |
27 |
26
|
notbid |
⊢ ( 𝑥 = ∅ → ( ¬ 2 ≤ ( ♯ ‘ 𝑥 ) ↔ ¬ 2 ≤ 0 ) ) |
28 |
|
fveq2 |
⊢ ( 𝑥 = { 𝑣 } → ( ♯ ‘ 𝑥 ) = ( ♯ ‘ { 𝑣 } ) ) |
29 |
|
hashsng |
⊢ ( 𝑣 ∈ V → ( ♯ ‘ { 𝑣 } ) = 1 ) |
30 |
29
|
elv |
⊢ ( ♯ ‘ { 𝑣 } ) = 1 |
31 |
28 30
|
eqtrdi |
⊢ ( 𝑥 = { 𝑣 } → ( ♯ ‘ 𝑥 ) = 1 ) |
32 |
31
|
breq2d |
⊢ ( 𝑥 = { 𝑣 } → ( 2 ≤ ( ♯ ‘ 𝑥 ) ↔ 2 ≤ 1 ) ) |
33 |
32
|
notbid |
⊢ ( 𝑥 = { 𝑣 } → ( ¬ 2 ≤ ( ♯ ‘ 𝑥 ) ↔ ¬ 2 ≤ 1 ) ) |
34 |
21 22 27 33
|
ralpr |
⊢ ( ∀ 𝑥 ∈ { ∅ , { 𝑣 } } ¬ 2 ≤ ( ♯ ‘ 𝑥 ) ↔ ( ¬ 2 ≤ 0 ∧ ¬ 2 ≤ 1 ) ) |
35 |
16 20 34
|
mpbir2an |
⊢ ∀ 𝑥 ∈ { ∅ , { 𝑣 } } ¬ 2 ≤ ( ♯ ‘ 𝑥 ) |
36 |
|
pwsn |
⊢ 𝒫 { 𝑣 } = { ∅ , { 𝑣 } } |
37 |
36
|
raleqi |
⊢ ( ∀ 𝑥 ∈ 𝒫 { 𝑣 } ¬ 2 ≤ ( ♯ ‘ 𝑥 ) ↔ ∀ 𝑥 ∈ { ∅ , { 𝑣 } } ¬ 2 ≤ ( ♯ ‘ 𝑥 ) ) |
38 |
35 37
|
mpbir |
⊢ ∀ 𝑥 ∈ 𝒫 { 𝑣 } ¬ 2 ≤ ( ♯ ‘ 𝑥 ) |
39 |
|
rabeq0 |
⊢ ( { 𝑥 ∈ 𝒫 { 𝑣 } ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } = ∅ ↔ ∀ 𝑥 ∈ 𝒫 { 𝑣 } ¬ 2 ≤ ( ♯ ‘ 𝑥 ) ) |
40 |
38 39
|
mpbir |
⊢ { 𝑥 ∈ 𝒫 { 𝑣 } ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } = ∅ |
41 |
11 40
|
eqtrdi |
⊢ ( 𝑉 = { 𝑣 } → { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } = ∅ ) |
42 |
41
|
a1d |
⊢ ( 𝑉 = { 𝑣 } → ( 𝐺 ∈ UHGraph → { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } = ∅ ) ) |
43 |
42
|
exlimiv |
⊢ ( ∃ 𝑣 𝑉 = { 𝑣 } → ( 𝐺 ∈ UHGraph → { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } = ∅ ) ) |
44 |
9 43
|
sylbi |
⊢ ( ( ♯ ‘ 𝑉 ) = 1 → ( 𝐺 ∈ UHGraph → { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } = ∅ ) ) |
45 |
44
|
impcom |
⊢ ( ( 𝐺 ∈ UHGraph ∧ ( ♯ ‘ 𝑉 ) = 1 ) → { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } = ∅ ) |
46 |
3 45
|
syl5eq |
⊢ ( ( 𝐺 ∈ UHGraph ∧ ( ♯ ‘ 𝑉 ) = 1 ) → 𝐸 = ∅ ) |
47 |
4 6 46
|
feq123d |
⊢ ( ( 𝐺 ∈ UHGraph ∧ ( ♯ ‘ 𝑉 ) = 1 ) → ( 𝐼 : dom 𝐼 ⟶ 𝐸 ↔ ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ ∅ ) ) |
48 |
47
|
biimp3a |
⊢ ( ( 𝐺 ∈ UHGraph ∧ ( ♯ ‘ 𝑉 ) = 1 ∧ 𝐼 : dom 𝐼 ⟶ 𝐸 ) → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ ∅ ) |
49 |
|
f00 |
⊢ ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ ∅ ↔ ( ( iEdg ‘ 𝐺 ) = ∅ ∧ dom ( iEdg ‘ 𝐺 ) = ∅ ) ) |
50 |
49
|
simplbi |
⊢ ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ ∅ → ( iEdg ‘ 𝐺 ) = ∅ ) |
51 |
48 50
|
syl |
⊢ ( ( 𝐺 ∈ UHGraph ∧ ( ♯ ‘ 𝑉 ) = 1 ∧ 𝐼 : dom 𝐼 ⟶ 𝐸 ) → ( iEdg ‘ 𝐺 ) = ∅ ) |
52 |
|
uhgriedg0edg0 |
⊢ ( 𝐺 ∈ UHGraph → ( ( Edg ‘ 𝐺 ) = ∅ ↔ ( iEdg ‘ 𝐺 ) = ∅ ) ) |
53 |
52
|
3ad2ant1 |
⊢ ( ( 𝐺 ∈ UHGraph ∧ ( ♯ ‘ 𝑉 ) = 1 ∧ 𝐼 : dom 𝐼 ⟶ 𝐸 ) → ( ( Edg ‘ 𝐺 ) = ∅ ↔ ( iEdg ‘ 𝐺 ) = ∅ ) ) |
54 |
51 53
|
mpbird |
⊢ ( ( 𝐺 ∈ UHGraph ∧ ( ♯ ‘ 𝑉 ) = 1 ∧ 𝐼 : dom 𝐼 ⟶ 𝐸 ) → ( Edg ‘ 𝐺 ) = ∅ ) |