Step |
Hyp |
Ref |
Expression |
1 |
|
2prm |
⊢ 2 ∈ ℙ |
2 |
|
lgsval2 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 2 ∈ ℙ ) → ( 𝐴 /L 2 ) = if ( 2 = 2 , if ( 2 ∥ 𝐴 , 0 , if ( ( 𝐴 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) , ( ( ( ( 𝐴 ↑ ( ( 2 − 1 ) / 2 ) ) + 1 ) mod 2 ) − 1 ) ) ) |
3 |
1 2
|
mpan2 |
⊢ ( 𝐴 ∈ ℤ → ( 𝐴 /L 2 ) = if ( 2 = 2 , if ( 2 ∥ 𝐴 , 0 , if ( ( 𝐴 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) , ( ( ( ( 𝐴 ↑ ( ( 2 − 1 ) / 2 ) ) + 1 ) mod 2 ) − 1 ) ) ) |
4 |
|
eqid |
⊢ 2 = 2 |
5 |
4
|
iftruei |
⊢ if ( 2 = 2 , if ( 2 ∥ 𝐴 , 0 , if ( ( 𝐴 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) , ( ( ( ( 𝐴 ↑ ( ( 2 − 1 ) / 2 ) ) + 1 ) mod 2 ) − 1 ) ) = if ( 2 ∥ 𝐴 , 0 , if ( ( 𝐴 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) |
6 |
3 5
|
eqtrdi |
⊢ ( 𝐴 ∈ ℤ → ( 𝐴 /L 2 ) = if ( 2 ∥ 𝐴 , 0 , if ( ( 𝐴 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) ) |