| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lgscl | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝐴  /L  𝑁 )  ∈  ℤ ) | 
						
							| 2 | 1 | zcnd | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝐴  /L  𝑁 )  ∈  ℂ ) | 
						
							| 3 | 2 | abscld | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( abs ‘ ( 𝐴  /L  𝑁 ) )  ∈  ℝ ) | 
						
							| 4 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 5 |  | letri3 | ⊢ ( ( ( abs ‘ ( 𝐴  /L  𝑁 ) )  ∈  ℝ  ∧  1  ∈  ℝ )  →  ( ( abs ‘ ( 𝐴  /L  𝑁 ) )  =  1  ↔  ( ( abs ‘ ( 𝐴  /L  𝑁 ) )  ≤  1  ∧  1  ≤  ( abs ‘ ( 𝐴  /L  𝑁 ) ) ) ) ) | 
						
							| 6 | 3 4 5 | sylancl | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( ( abs ‘ ( 𝐴  /L  𝑁 ) )  =  1  ↔  ( ( abs ‘ ( 𝐴  /L  𝑁 ) )  ≤  1  ∧  1  ≤  ( abs ‘ ( 𝐴  /L  𝑁 ) ) ) ) ) | 
						
							| 7 |  | lgsle1 | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( abs ‘ ( 𝐴  /L  𝑁 ) )  ≤  1 ) | 
						
							| 8 | 7 | biantrurd | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 1  ≤  ( abs ‘ ( 𝐴  /L  𝑁 ) )  ↔  ( ( abs ‘ ( 𝐴  /L  𝑁 ) )  ≤  1  ∧  1  ≤  ( abs ‘ ( 𝐴  /L  𝑁 ) ) ) ) ) | 
						
							| 9 |  | nnne0 | ⊢ ( ( abs ‘ ( 𝐴  /L  𝑁 ) )  ∈  ℕ  →  ( abs ‘ ( 𝐴  /L  𝑁 ) )  ≠  0 ) | 
						
							| 10 |  | nn0abscl | ⊢ ( ( 𝐴  /L  𝑁 )  ∈  ℤ  →  ( abs ‘ ( 𝐴  /L  𝑁 ) )  ∈  ℕ0 ) | 
						
							| 11 | 1 10 | syl | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( abs ‘ ( 𝐴  /L  𝑁 ) )  ∈  ℕ0 ) | 
						
							| 12 |  | elnn0 | ⊢ ( ( abs ‘ ( 𝐴  /L  𝑁 ) )  ∈  ℕ0  ↔  ( ( abs ‘ ( 𝐴  /L  𝑁 ) )  ∈  ℕ  ∨  ( abs ‘ ( 𝐴  /L  𝑁 ) )  =  0 ) ) | 
						
							| 13 | 11 12 | sylib | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( ( abs ‘ ( 𝐴  /L  𝑁 ) )  ∈  ℕ  ∨  ( abs ‘ ( 𝐴  /L  𝑁 ) )  =  0 ) ) | 
						
							| 14 | 13 | ord | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( ¬  ( abs ‘ ( 𝐴  /L  𝑁 ) )  ∈  ℕ  →  ( abs ‘ ( 𝐴  /L  𝑁 ) )  =  0 ) ) | 
						
							| 15 | 14 | necon1ad | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( ( abs ‘ ( 𝐴  /L  𝑁 ) )  ≠  0  →  ( abs ‘ ( 𝐴  /L  𝑁 ) )  ∈  ℕ ) ) | 
						
							| 16 | 9 15 | impbid2 | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( ( abs ‘ ( 𝐴  /L  𝑁 ) )  ∈  ℕ  ↔  ( abs ‘ ( 𝐴  /L  𝑁 ) )  ≠  0 ) ) | 
						
							| 17 |  | elnnnn0c | ⊢ ( ( abs ‘ ( 𝐴  /L  𝑁 ) )  ∈  ℕ  ↔  ( ( abs ‘ ( 𝐴  /L  𝑁 ) )  ∈  ℕ0  ∧  1  ≤  ( abs ‘ ( 𝐴  /L  𝑁 ) ) ) ) | 
						
							| 18 | 17 | baib | ⊢ ( ( abs ‘ ( 𝐴  /L  𝑁 ) )  ∈  ℕ0  →  ( ( abs ‘ ( 𝐴  /L  𝑁 ) )  ∈  ℕ  ↔  1  ≤  ( abs ‘ ( 𝐴  /L  𝑁 ) ) ) ) | 
						
							| 19 | 11 18 | syl | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( ( abs ‘ ( 𝐴  /L  𝑁 ) )  ∈  ℕ  ↔  1  ≤  ( abs ‘ ( 𝐴  /L  𝑁 ) ) ) ) | 
						
							| 20 |  | abs00 | ⊢ ( ( 𝐴  /L  𝑁 )  ∈  ℂ  →  ( ( abs ‘ ( 𝐴  /L  𝑁 ) )  =  0  ↔  ( 𝐴  /L  𝑁 )  =  0 ) ) | 
						
							| 21 | 20 | necon3bid | ⊢ ( ( 𝐴  /L  𝑁 )  ∈  ℂ  →  ( ( abs ‘ ( 𝐴  /L  𝑁 ) )  ≠  0  ↔  ( 𝐴  /L  𝑁 )  ≠  0 ) ) | 
						
							| 22 | 2 21 | syl | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( ( abs ‘ ( 𝐴  /L  𝑁 ) )  ≠  0  ↔  ( 𝐴  /L  𝑁 )  ≠  0 ) ) | 
						
							| 23 |  | lgsne0 | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( ( 𝐴  /L  𝑁 )  ≠  0  ↔  ( 𝐴  gcd  𝑁 )  =  1 ) ) | 
						
							| 24 | 22 23 | bitrd | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( ( abs ‘ ( 𝐴  /L  𝑁 ) )  ≠  0  ↔  ( 𝐴  gcd  𝑁 )  =  1 ) ) | 
						
							| 25 | 16 19 24 | 3bitr3d | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 1  ≤  ( abs ‘ ( 𝐴  /L  𝑁 ) )  ↔  ( 𝐴  gcd  𝑁 )  =  1 ) ) | 
						
							| 26 | 6 8 25 | 3bitr2d | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( ( abs ‘ ( 𝐴  /L  𝑁 ) )  =  1  ↔  ( 𝐴  gcd  𝑁 )  =  1 ) ) |