Description: The Legendre symbol is an integer. (Contributed by Mario Carneiro, 4-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | lgscl | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝐴 /L 𝑁 ) ∈ ℤ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrab2 | ⊢ { 𝑥 ∈ ℤ ∣ ( abs ‘ 𝑥 ) ≤ 1 } ⊆ ℤ | |
2 | eqid | ⊢ { 𝑥 ∈ ℤ ∣ ( abs ‘ 𝑥 ) ≤ 1 } = { 𝑥 ∈ ℤ ∣ ( abs ‘ 𝑥 ) ≤ 1 } | |
3 | 2 | lgscl2 | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝐴 /L 𝑁 ) ∈ { 𝑥 ∈ ℤ ∣ ( abs ‘ 𝑥 ) ≤ 1 } ) |
4 | 1 3 | sselid | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝐴 /L 𝑁 ) ∈ ℤ ) |