Metamath Proof Explorer


Theorem lgscl

Description: The Legendre symbol is an integer. (Contributed by Mario Carneiro, 4-Feb-2015)

Ref Expression
Assertion lgscl ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝐴 /L 𝑁 ) ∈ ℤ )

Proof

Step Hyp Ref Expression
1 ssrab2 { 𝑥 ∈ ℤ ∣ ( abs ‘ 𝑥 ) ≤ 1 } ⊆ ℤ
2 eqid { 𝑥 ∈ ℤ ∣ ( abs ‘ 𝑥 ) ≤ 1 } = { 𝑥 ∈ ℤ ∣ ( abs ‘ 𝑥 ) ≤ 1 }
3 2 lgscl2 ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝐴 /L 𝑁 ) ∈ { 𝑥 ∈ ℤ ∣ ( abs ‘ 𝑥 ) ≤ 1 } )
4 1 3 sselid ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝐴 /L 𝑁 ) ∈ ℤ )