Metamath Proof Explorer


Theorem lgscl1

Description: The value of the Legendre symbol is either -1 or 0 or 1. (Contributed by AV, 13-Jul-2021)

Ref Expression
Assertion lgscl1 ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝐴 /L 𝑁 ) ∈ { - 1 , 0 , 1 } )

Proof

Step Hyp Ref Expression
1 lgsle1 ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( abs ‘ ( 𝐴 /L 𝑁 ) ) ≤ 1 )
2 lgscl ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝐴 /L 𝑁 ) ∈ ℤ )
3 zabsle1 ( ( 𝐴 /L 𝑁 ) ∈ ℤ → ( ( 𝐴 /L 𝑁 ) ∈ { - 1 , 0 , 1 } ↔ ( abs ‘ ( 𝐴 /L 𝑁 ) ) ≤ 1 ) )
4 2 3 syl ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝐴 /L 𝑁 ) ∈ { - 1 , 0 , 1 } ↔ ( abs ‘ ( 𝐴 /L 𝑁 ) ) ≤ 1 ) )
5 1 4 mpbird ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝐴 /L 𝑁 ) ∈ { - 1 , 0 , 1 } )