Description: The value of the Legendre symbol is either -1 or 0 or 1. (Contributed by AV, 13-Jul-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | lgscl1 | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝐴 /L 𝑁 ) ∈ { - 1 , 0 , 1 } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lgsle1 | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( abs ‘ ( 𝐴 /L 𝑁 ) ) ≤ 1 ) | |
2 | lgscl | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝐴 /L 𝑁 ) ∈ ℤ ) | |
3 | zabsle1 | ⊢ ( ( 𝐴 /L 𝑁 ) ∈ ℤ → ( ( 𝐴 /L 𝑁 ) ∈ { - 1 , 0 , 1 } ↔ ( abs ‘ ( 𝐴 /L 𝑁 ) ) ≤ 1 ) ) | |
4 | 2 3 | syl | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝐴 /L 𝑁 ) ∈ { - 1 , 0 , 1 } ↔ ( abs ‘ ( 𝐴 /L 𝑁 ) ) ≤ 1 ) ) |
5 | 1 4 | mpbird | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝐴 /L 𝑁 ) ∈ { - 1 , 0 , 1 } ) |