| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lgsval.1 | ⊢ 𝐹  =  ( 𝑛  ∈  ℕ  ↦  if ( 𝑛  ∈  ℙ ,  ( if ( 𝑛  =  2 ,  if ( 2  ∥  𝐴 ,  0 ,  if ( ( 𝐴  mod  8 )  ∈  { 1 ,  7 } ,  1 ,  - 1 ) ) ,  ( ( ( ( 𝐴 ↑ ( ( 𝑛  −  1 )  /  2 ) )  +  1 )  mod  𝑛 )  −  1 ) ) ↑ ( 𝑛  pCnt  𝑁 ) ) ,  1 ) ) | 
						
							| 2 |  | lgsfcl2.z | ⊢ 𝑍  =  { 𝑥  ∈  ℤ  ∣  ( abs ‘ 𝑥 )  ≤  1 } | 
						
							| 3 | 1 | lgsval | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝐴  /L  𝑁 )  =  if ( 𝑁  =  0 ,  if ( ( 𝐴 ↑ 2 )  =  1 ,  1 ,  0 ) ,  ( if ( ( 𝑁  <  0  ∧  𝐴  <  0 ) ,  - 1 ,  1 )  ·  ( seq 1 (  ·  ,  𝐹 ) ‘ ( abs ‘ 𝑁 ) ) ) ) ) | 
						
							| 4 | 2 | lgslem2 | ⊢ ( - 1  ∈  𝑍  ∧  0  ∈  𝑍  ∧  1  ∈  𝑍 ) | 
						
							| 5 | 4 | simp3i | ⊢ 1  ∈  𝑍 | 
						
							| 6 | 4 | simp2i | ⊢ 0  ∈  𝑍 | 
						
							| 7 | 5 6 | ifcli | ⊢ if ( ( 𝐴 ↑ 2 )  =  1 ,  1 ,  0 )  ∈  𝑍 | 
						
							| 8 | 7 | a1i | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  𝑁  =  0 )  →  if ( ( 𝐴 ↑ 2 )  =  1 ,  1 ,  0 )  ∈  𝑍 ) | 
						
							| 9 | 4 | simp1i | ⊢ - 1  ∈  𝑍 | 
						
							| 10 | 9 5 | ifcli | ⊢ if ( ( 𝑁  <  0  ∧  𝐴  <  0 ) ,  - 1 ,  1 )  ∈  𝑍 | 
						
							| 11 |  | simplr | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  ¬  𝑁  =  0 )  →  𝑁  ∈  ℤ ) | 
						
							| 12 |  | simpr | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  ¬  𝑁  =  0 )  →  ¬  𝑁  =  0 ) | 
						
							| 13 | 12 | neqned | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  ¬  𝑁  =  0 )  →  𝑁  ≠  0 ) | 
						
							| 14 |  | nnabscl | ⊢ ( ( 𝑁  ∈  ℤ  ∧  𝑁  ≠  0 )  →  ( abs ‘ 𝑁 )  ∈  ℕ ) | 
						
							| 15 | 11 13 14 | syl2anc | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  ¬  𝑁  =  0 )  →  ( abs ‘ 𝑁 )  ∈  ℕ ) | 
						
							| 16 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 17 | 15 16 | eleqtrdi | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  ¬  𝑁  =  0 )  →  ( abs ‘ 𝑁 )  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 18 |  | df-ne | ⊢ ( 𝑁  ≠  0  ↔  ¬  𝑁  =  0 ) | 
						
							| 19 | 1 2 | lgsfcl2 | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝑁  ≠  0 )  →  𝐹 : ℕ ⟶ 𝑍 ) | 
						
							| 20 | 19 | 3expa | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  𝑁  ≠  0 )  →  𝐹 : ℕ ⟶ 𝑍 ) | 
						
							| 21 | 18 20 | sylan2br | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  ¬  𝑁  =  0 )  →  𝐹 : ℕ ⟶ 𝑍 ) | 
						
							| 22 |  | elfznn | ⊢ ( 𝑦  ∈  ( 1 ... ( abs ‘ 𝑁 ) )  →  𝑦  ∈  ℕ ) | 
						
							| 23 |  | ffvelcdm | ⊢ ( ( 𝐹 : ℕ ⟶ 𝑍  ∧  𝑦  ∈  ℕ )  →  ( 𝐹 ‘ 𝑦 )  ∈  𝑍 ) | 
						
							| 24 | 21 22 23 | syl2an | ⊢ ( ( ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  ¬  𝑁  =  0 )  ∧  𝑦  ∈  ( 1 ... ( abs ‘ 𝑁 ) ) )  →  ( 𝐹 ‘ 𝑦 )  ∈  𝑍 ) | 
						
							| 25 | 2 | lgslem3 | ⊢ ( ( 𝑦  ∈  𝑍  ∧  𝑧  ∈  𝑍 )  →  ( 𝑦  ·  𝑧 )  ∈  𝑍 ) | 
						
							| 26 | 25 | adantl | ⊢ ( ( ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  ¬  𝑁  =  0 )  ∧  ( 𝑦  ∈  𝑍  ∧  𝑧  ∈  𝑍 ) )  →  ( 𝑦  ·  𝑧 )  ∈  𝑍 ) | 
						
							| 27 | 17 24 26 | seqcl | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  ¬  𝑁  =  0 )  →  ( seq 1 (  ·  ,  𝐹 ) ‘ ( abs ‘ 𝑁 ) )  ∈  𝑍 ) | 
						
							| 28 | 2 | lgslem3 | ⊢ ( ( if ( ( 𝑁  <  0  ∧  𝐴  <  0 ) ,  - 1 ,  1 )  ∈  𝑍  ∧  ( seq 1 (  ·  ,  𝐹 ) ‘ ( abs ‘ 𝑁 ) )  ∈  𝑍 )  →  ( if ( ( 𝑁  <  0  ∧  𝐴  <  0 ) ,  - 1 ,  1 )  ·  ( seq 1 (  ·  ,  𝐹 ) ‘ ( abs ‘ 𝑁 ) ) )  ∈  𝑍 ) | 
						
							| 29 | 10 27 28 | sylancr | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  ¬  𝑁  =  0 )  →  ( if ( ( 𝑁  <  0  ∧  𝐴  <  0 ) ,  - 1 ,  1 )  ·  ( seq 1 (  ·  ,  𝐹 ) ‘ ( abs ‘ 𝑁 ) ) )  ∈  𝑍 ) | 
						
							| 30 | 8 29 | ifclda | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  if ( 𝑁  =  0 ,  if ( ( 𝐴 ↑ 2 )  =  1 ,  1 ,  0 ) ,  ( if ( ( 𝑁  <  0  ∧  𝐴  <  0 ) ,  - 1 ,  1 )  ·  ( seq 1 (  ·  ,  𝐹 ) ‘ ( abs ‘ 𝑁 ) ) ) )  ∈  𝑍 ) | 
						
							| 31 | 3 30 | eqeltrd | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝐴  /L  𝑁 )  ∈  𝑍 ) |