Step |
Hyp |
Ref |
Expression |
1 |
|
lgsval.1 |
⊢ 𝐹 = ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ ℙ , ( if ( 𝑛 = 2 , if ( 2 ∥ 𝐴 , 0 , if ( ( 𝐴 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) , ( ( ( ( 𝐴 ↑ ( ( 𝑛 − 1 ) / 2 ) ) + 1 ) mod 𝑛 ) − 1 ) ) ↑ ( 𝑛 pCnt 𝑁 ) ) , 1 ) ) |
2 |
|
lgsfcl2.z |
⊢ 𝑍 = { 𝑥 ∈ ℤ ∣ ( abs ‘ 𝑥 ) ≤ 1 } |
3 |
1
|
lgsval |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝐴 /L 𝑁 ) = if ( 𝑁 = 0 , if ( ( 𝐴 ↑ 2 ) = 1 , 1 , 0 ) , ( if ( ( 𝑁 < 0 ∧ 𝐴 < 0 ) , - 1 , 1 ) · ( seq 1 ( · , 𝐹 ) ‘ ( abs ‘ 𝑁 ) ) ) ) ) |
4 |
2
|
lgslem2 |
⊢ ( - 1 ∈ 𝑍 ∧ 0 ∈ 𝑍 ∧ 1 ∈ 𝑍 ) |
5 |
4
|
simp3i |
⊢ 1 ∈ 𝑍 |
6 |
4
|
simp2i |
⊢ 0 ∈ 𝑍 |
7 |
5 6
|
ifcli |
⊢ if ( ( 𝐴 ↑ 2 ) = 1 , 1 , 0 ) ∈ 𝑍 |
8 |
7
|
a1i |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑁 = 0 ) → if ( ( 𝐴 ↑ 2 ) = 1 , 1 , 0 ) ∈ 𝑍 ) |
9 |
4
|
simp1i |
⊢ - 1 ∈ 𝑍 |
10 |
9 5
|
ifcli |
⊢ if ( ( 𝑁 < 0 ∧ 𝐴 < 0 ) , - 1 , 1 ) ∈ 𝑍 |
11 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ 𝑁 = 0 ) → 𝑁 ∈ ℤ ) |
12 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ 𝑁 = 0 ) → ¬ 𝑁 = 0 ) |
13 |
12
|
neqned |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ 𝑁 = 0 ) → 𝑁 ≠ 0 ) |
14 |
|
nnabscl |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) → ( abs ‘ 𝑁 ) ∈ ℕ ) |
15 |
11 13 14
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ 𝑁 = 0 ) → ( abs ‘ 𝑁 ) ∈ ℕ ) |
16 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
17 |
15 16
|
eleqtrdi |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ 𝑁 = 0 ) → ( abs ‘ 𝑁 ) ∈ ( ℤ≥ ‘ 1 ) ) |
18 |
|
df-ne |
⊢ ( 𝑁 ≠ 0 ↔ ¬ 𝑁 = 0 ) |
19 |
1 2
|
lgsfcl2 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) → 𝐹 : ℕ ⟶ 𝑍 ) |
20 |
19
|
3expa |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑁 ≠ 0 ) → 𝐹 : ℕ ⟶ 𝑍 ) |
21 |
18 20
|
sylan2br |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ 𝑁 = 0 ) → 𝐹 : ℕ ⟶ 𝑍 ) |
22 |
|
elfznn |
⊢ ( 𝑦 ∈ ( 1 ... ( abs ‘ 𝑁 ) ) → 𝑦 ∈ ℕ ) |
23 |
|
ffvelrn |
⊢ ( ( 𝐹 : ℕ ⟶ 𝑍 ∧ 𝑦 ∈ ℕ ) → ( 𝐹 ‘ 𝑦 ) ∈ 𝑍 ) |
24 |
21 22 23
|
syl2an |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ 𝑁 = 0 ) ∧ 𝑦 ∈ ( 1 ... ( abs ‘ 𝑁 ) ) ) → ( 𝐹 ‘ 𝑦 ) ∈ 𝑍 ) |
25 |
2
|
lgslem3 |
⊢ ( ( 𝑦 ∈ 𝑍 ∧ 𝑧 ∈ 𝑍 ) → ( 𝑦 · 𝑧 ) ∈ 𝑍 ) |
26 |
25
|
adantl |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ 𝑁 = 0 ) ∧ ( 𝑦 ∈ 𝑍 ∧ 𝑧 ∈ 𝑍 ) ) → ( 𝑦 · 𝑧 ) ∈ 𝑍 ) |
27 |
17 24 26
|
seqcl |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ 𝑁 = 0 ) → ( seq 1 ( · , 𝐹 ) ‘ ( abs ‘ 𝑁 ) ) ∈ 𝑍 ) |
28 |
2
|
lgslem3 |
⊢ ( ( if ( ( 𝑁 < 0 ∧ 𝐴 < 0 ) , - 1 , 1 ) ∈ 𝑍 ∧ ( seq 1 ( · , 𝐹 ) ‘ ( abs ‘ 𝑁 ) ) ∈ 𝑍 ) → ( if ( ( 𝑁 < 0 ∧ 𝐴 < 0 ) , - 1 , 1 ) · ( seq 1 ( · , 𝐹 ) ‘ ( abs ‘ 𝑁 ) ) ) ∈ 𝑍 ) |
29 |
10 27 28
|
sylancr |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ 𝑁 = 0 ) → ( if ( ( 𝑁 < 0 ∧ 𝐴 < 0 ) , - 1 , 1 ) · ( seq 1 ( · , 𝐹 ) ‘ ( abs ‘ 𝑁 ) ) ) ∈ 𝑍 ) |
30 |
8 29
|
ifclda |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → if ( 𝑁 = 0 , if ( ( 𝐴 ↑ 2 ) = 1 , 1 , 0 ) , ( if ( ( 𝑁 < 0 ∧ 𝐴 < 0 ) , - 1 , 1 ) · ( seq 1 ( · , 𝐹 ) ‘ ( abs ‘ 𝑁 ) ) ) ) ∈ 𝑍 ) |
31 |
3 30
|
eqeltrd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝐴 /L 𝑁 ) ∈ 𝑍 ) |