Step |
Hyp |
Ref |
Expression |
1 |
|
lgsdchr.g |
⊢ 𝐺 = ( DChr ‘ 𝑁 ) |
2 |
|
lgsdchr.z |
⊢ 𝑍 = ( ℤ/nℤ ‘ 𝑁 ) |
3 |
|
lgsdchr.d |
⊢ 𝐷 = ( Base ‘ 𝐺 ) |
4 |
|
lgsdchr.b |
⊢ 𝐵 = ( Base ‘ 𝑍 ) |
5 |
|
lgsdchr.l |
⊢ 𝐿 = ( ℤRHom ‘ 𝑍 ) |
6 |
|
lgsdchr.x |
⊢ 𝑋 = ( 𝑦 ∈ 𝐵 ↦ ( ℩ ℎ ∃ 𝑚 ∈ ℤ ( 𝑦 = ( 𝐿 ‘ 𝑚 ) ∧ ℎ = ( 𝑚 /L 𝑁 ) ) ) ) |
7 |
|
iotaex |
⊢ ( ℩ ℎ ∃ 𝑚 ∈ ℤ ( 𝑦 = ( 𝐿 ‘ 𝑚 ) ∧ ℎ = ( 𝑚 /L 𝑁 ) ) ) ∈ V |
8 |
7
|
a1i |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) ∧ 𝑦 ∈ 𝐵 ) → ( ℩ ℎ ∃ 𝑚 ∈ ℤ ( 𝑦 = ( 𝐿 ‘ 𝑚 ) ∧ ℎ = ( 𝑚 /L 𝑁 ) ) ) ∈ V ) |
9 |
6
|
a1i |
⊢ ( ( 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) → 𝑋 = ( 𝑦 ∈ 𝐵 ↦ ( ℩ ℎ ∃ 𝑚 ∈ ℤ ( 𝑦 = ( 𝐿 ‘ 𝑚 ) ∧ ℎ = ( 𝑚 /L 𝑁 ) ) ) ) ) |
10 |
|
nnnn0 |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ0 ) |
11 |
10
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) → 𝑁 ∈ ℕ0 ) |
12 |
2 4 5
|
znzrhfo |
⊢ ( 𝑁 ∈ ℕ0 → 𝐿 : ℤ –onto→ 𝐵 ) |
13 |
11 12
|
syl |
⊢ ( ( 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) → 𝐿 : ℤ –onto→ 𝐵 ) |
14 |
|
foelrn |
⊢ ( ( 𝐿 : ℤ –onto→ 𝐵 ∧ 𝑥 ∈ 𝐵 ) → ∃ 𝑎 ∈ ℤ 𝑥 = ( 𝐿 ‘ 𝑎 ) ) |
15 |
13 14
|
sylan |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) ∧ 𝑥 ∈ 𝐵 ) → ∃ 𝑎 ∈ ℤ 𝑥 = ( 𝐿 ‘ 𝑎 ) ) |
16 |
1 2 3 4 5 6
|
lgsdchrval |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) ∧ 𝑎 ∈ ℤ ) → ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) = ( 𝑎 /L 𝑁 ) ) |
17 |
|
simpr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) ∧ 𝑎 ∈ ℤ ) → 𝑎 ∈ ℤ ) |
18 |
|
nnz |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℤ ) |
19 |
18
|
ad2antrr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) ∧ 𝑎 ∈ ℤ ) → 𝑁 ∈ ℤ ) |
20 |
|
lgscl |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑎 /L 𝑁 ) ∈ ℤ ) |
21 |
17 19 20
|
syl2anc |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) ∧ 𝑎 ∈ ℤ ) → ( 𝑎 /L 𝑁 ) ∈ ℤ ) |
22 |
21
|
zred |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) ∧ 𝑎 ∈ ℤ ) → ( 𝑎 /L 𝑁 ) ∈ ℝ ) |
23 |
16 22
|
eqeltrd |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) ∧ 𝑎 ∈ ℤ ) → ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) ∈ ℝ ) |
24 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝐿 ‘ 𝑎 ) → ( 𝑋 ‘ 𝑥 ) = ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) ) |
25 |
24
|
eleq1d |
⊢ ( 𝑥 = ( 𝐿 ‘ 𝑎 ) → ( ( 𝑋 ‘ 𝑥 ) ∈ ℝ ↔ ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) ∈ ℝ ) ) |
26 |
23 25
|
syl5ibrcom |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) ∧ 𝑎 ∈ ℤ ) → ( 𝑥 = ( 𝐿 ‘ 𝑎 ) → ( 𝑋 ‘ 𝑥 ) ∈ ℝ ) ) |
27 |
26
|
rexlimdva |
⊢ ( ( 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) → ( ∃ 𝑎 ∈ ℤ 𝑥 = ( 𝐿 ‘ 𝑎 ) → ( 𝑋 ‘ 𝑥 ) ∈ ℝ ) ) |
28 |
27
|
imp |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) ∧ ∃ 𝑎 ∈ ℤ 𝑥 = ( 𝐿 ‘ 𝑎 ) ) → ( 𝑋 ‘ 𝑥 ) ∈ ℝ ) |
29 |
15 28
|
syldan |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝑋 ‘ 𝑥 ) ∈ ℝ ) |
30 |
8 9 29
|
fmpt2d |
⊢ ( ( 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) → 𝑋 : 𝐵 ⟶ ℝ ) |
31 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
32 |
|
fss |
⊢ ( ( 𝑋 : 𝐵 ⟶ ℝ ∧ ℝ ⊆ ℂ ) → 𝑋 : 𝐵 ⟶ ℂ ) |
33 |
30 31 32
|
sylancl |
⊢ ( ( 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) → 𝑋 : 𝐵 ⟶ ℂ ) |
34 |
|
eqid |
⊢ ( Unit ‘ 𝑍 ) = ( Unit ‘ 𝑍 ) |
35 |
4 34
|
unitss |
⊢ ( Unit ‘ 𝑍 ) ⊆ 𝐵 |
36 |
|
foelrn |
⊢ ( ( 𝐿 : ℤ –onto→ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ∃ 𝑏 ∈ ℤ 𝑦 = ( 𝐿 ‘ 𝑏 ) ) |
37 |
13 36
|
sylan |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) ∧ 𝑦 ∈ 𝐵 ) → ∃ 𝑏 ∈ ℤ 𝑦 = ( 𝐿 ‘ 𝑏 ) ) |
38 |
15 37
|
anim12dan |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ∃ 𝑎 ∈ ℤ 𝑥 = ( 𝐿 ‘ 𝑎 ) ∧ ∃ 𝑏 ∈ ℤ 𝑦 = ( 𝐿 ‘ 𝑏 ) ) ) |
39 |
|
reeanv |
⊢ ( ∃ 𝑎 ∈ ℤ ∃ 𝑏 ∈ ℤ ( 𝑥 = ( 𝐿 ‘ 𝑎 ) ∧ 𝑦 = ( 𝐿 ‘ 𝑏 ) ) ↔ ( ∃ 𝑎 ∈ ℤ 𝑥 = ( 𝐿 ‘ 𝑎 ) ∧ ∃ 𝑏 ∈ ℤ 𝑦 = ( 𝐿 ‘ 𝑏 ) ) ) |
40 |
17
|
adantrr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → 𝑎 ∈ ℤ ) |
41 |
|
simprr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → 𝑏 ∈ ℤ ) |
42 |
11
|
adantr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → 𝑁 ∈ ℕ0 ) |
43 |
|
lgsdirnn0 |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝑎 · 𝑏 ) /L 𝑁 ) = ( ( 𝑎 /L 𝑁 ) · ( 𝑏 /L 𝑁 ) ) ) |
44 |
40 41 42 43
|
syl3anc |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → ( ( 𝑎 · 𝑏 ) /L 𝑁 ) = ( ( 𝑎 /L 𝑁 ) · ( 𝑏 /L 𝑁 ) ) ) |
45 |
2
|
zncrng |
⊢ ( 𝑁 ∈ ℕ0 → 𝑍 ∈ CRing ) |
46 |
11 45
|
syl |
⊢ ( ( 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) → 𝑍 ∈ CRing ) |
47 |
|
crngring |
⊢ ( 𝑍 ∈ CRing → 𝑍 ∈ Ring ) |
48 |
46 47
|
syl |
⊢ ( ( 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) → 𝑍 ∈ Ring ) |
49 |
48
|
adantr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → 𝑍 ∈ Ring ) |
50 |
5
|
zrhrhm |
⊢ ( 𝑍 ∈ Ring → 𝐿 ∈ ( ℤring RingHom 𝑍 ) ) |
51 |
49 50
|
syl |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → 𝐿 ∈ ( ℤring RingHom 𝑍 ) ) |
52 |
|
zringbas |
⊢ ℤ = ( Base ‘ ℤring ) |
53 |
|
zringmulr |
⊢ · = ( .r ‘ ℤring ) |
54 |
|
eqid |
⊢ ( .r ‘ 𝑍 ) = ( .r ‘ 𝑍 ) |
55 |
52 53 54
|
rhmmul |
⊢ ( ( 𝐿 ∈ ( ℤring RingHom 𝑍 ) ∧ 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) → ( 𝐿 ‘ ( 𝑎 · 𝑏 ) ) = ( ( 𝐿 ‘ 𝑎 ) ( .r ‘ 𝑍 ) ( 𝐿 ‘ 𝑏 ) ) ) |
56 |
51 40 41 55
|
syl3anc |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → ( 𝐿 ‘ ( 𝑎 · 𝑏 ) ) = ( ( 𝐿 ‘ 𝑎 ) ( .r ‘ 𝑍 ) ( 𝐿 ‘ 𝑏 ) ) ) |
57 |
56
|
fveq2d |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → ( 𝑋 ‘ ( 𝐿 ‘ ( 𝑎 · 𝑏 ) ) ) = ( 𝑋 ‘ ( ( 𝐿 ‘ 𝑎 ) ( .r ‘ 𝑍 ) ( 𝐿 ‘ 𝑏 ) ) ) ) |
58 |
|
zmulcl |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) → ( 𝑎 · 𝑏 ) ∈ ℤ ) |
59 |
1 2 3 4 5 6
|
lgsdchrval |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) ∧ ( 𝑎 · 𝑏 ) ∈ ℤ ) → ( 𝑋 ‘ ( 𝐿 ‘ ( 𝑎 · 𝑏 ) ) ) = ( ( 𝑎 · 𝑏 ) /L 𝑁 ) ) |
60 |
58 59
|
sylan2 |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → ( 𝑋 ‘ ( 𝐿 ‘ ( 𝑎 · 𝑏 ) ) ) = ( ( 𝑎 · 𝑏 ) /L 𝑁 ) ) |
61 |
57 60
|
eqtr3d |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → ( 𝑋 ‘ ( ( 𝐿 ‘ 𝑎 ) ( .r ‘ 𝑍 ) ( 𝐿 ‘ 𝑏 ) ) ) = ( ( 𝑎 · 𝑏 ) /L 𝑁 ) ) |
62 |
16
|
adantrr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) = ( 𝑎 /L 𝑁 ) ) |
63 |
1 2 3 4 5 6
|
lgsdchrval |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) ∧ 𝑏 ∈ ℤ ) → ( 𝑋 ‘ ( 𝐿 ‘ 𝑏 ) ) = ( 𝑏 /L 𝑁 ) ) |
64 |
63
|
adantrl |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → ( 𝑋 ‘ ( 𝐿 ‘ 𝑏 ) ) = ( 𝑏 /L 𝑁 ) ) |
65 |
62 64
|
oveq12d |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) · ( 𝑋 ‘ ( 𝐿 ‘ 𝑏 ) ) ) = ( ( 𝑎 /L 𝑁 ) · ( 𝑏 /L 𝑁 ) ) ) |
66 |
44 61 65
|
3eqtr4d |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → ( 𝑋 ‘ ( ( 𝐿 ‘ 𝑎 ) ( .r ‘ 𝑍 ) ( 𝐿 ‘ 𝑏 ) ) ) = ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) · ( 𝑋 ‘ ( 𝐿 ‘ 𝑏 ) ) ) ) |
67 |
|
oveq12 |
⊢ ( ( 𝑥 = ( 𝐿 ‘ 𝑎 ) ∧ 𝑦 = ( 𝐿 ‘ 𝑏 ) ) → ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) = ( ( 𝐿 ‘ 𝑎 ) ( .r ‘ 𝑍 ) ( 𝐿 ‘ 𝑏 ) ) ) |
68 |
67
|
fveq2d |
⊢ ( ( 𝑥 = ( 𝐿 ‘ 𝑎 ) ∧ 𝑦 = ( 𝐿 ‘ 𝑏 ) ) → ( 𝑋 ‘ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ) = ( 𝑋 ‘ ( ( 𝐿 ‘ 𝑎 ) ( .r ‘ 𝑍 ) ( 𝐿 ‘ 𝑏 ) ) ) ) |
69 |
|
fveq2 |
⊢ ( 𝑦 = ( 𝐿 ‘ 𝑏 ) → ( 𝑋 ‘ 𝑦 ) = ( 𝑋 ‘ ( 𝐿 ‘ 𝑏 ) ) ) |
70 |
24 69
|
oveqan12d |
⊢ ( ( 𝑥 = ( 𝐿 ‘ 𝑎 ) ∧ 𝑦 = ( 𝐿 ‘ 𝑏 ) ) → ( ( 𝑋 ‘ 𝑥 ) · ( 𝑋 ‘ 𝑦 ) ) = ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) · ( 𝑋 ‘ ( 𝐿 ‘ 𝑏 ) ) ) ) |
71 |
68 70
|
eqeq12d |
⊢ ( ( 𝑥 = ( 𝐿 ‘ 𝑎 ) ∧ 𝑦 = ( 𝐿 ‘ 𝑏 ) ) → ( ( 𝑋 ‘ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ) = ( ( 𝑋 ‘ 𝑥 ) · ( 𝑋 ‘ 𝑦 ) ) ↔ ( 𝑋 ‘ ( ( 𝐿 ‘ 𝑎 ) ( .r ‘ 𝑍 ) ( 𝐿 ‘ 𝑏 ) ) ) = ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) · ( 𝑋 ‘ ( 𝐿 ‘ 𝑏 ) ) ) ) ) |
72 |
66 71
|
syl5ibrcom |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → ( ( 𝑥 = ( 𝐿 ‘ 𝑎 ) ∧ 𝑦 = ( 𝐿 ‘ 𝑏 ) ) → ( 𝑋 ‘ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ) = ( ( 𝑋 ‘ 𝑥 ) · ( 𝑋 ‘ 𝑦 ) ) ) ) |
73 |
72
|
rexlimdvva |
⊢ ( ( 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) → ( ∃ 𝑎 ∈ ℤ ∃ 𝑏 ∈ ℤ ( 𝑥 = ( 𝐿 ‘ 𝑎 ) ∧ 𝑦 = ( 𝐿 ‘ 𝑏 ) ) → ( 𝑋 ‘ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ) = ( ( 𝑋 ‘ 𝑥 ) · ( 𝑋 ‘ 𝑦 ) ) ) ) |
74 |
39 73
|
syl5bir |
⊢ ( ( 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) → ( ( ∃ 𝑎 ∈ ℤ 𝑥 = ( 𝐿 ‘ 𝑎 ) ∧ ∃ 𝑏 ∈ ℤ 𝑦 = ( 𝐿 ‘ 𝑏 ) ) → ( 𝑋 ‘ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ) = ( ( 𝑋 ‘ 𝑥 ) · ( 𝑋 ‘ 𝑦 ) ) ) ) |
75 |
74
|
imp |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) ∧ ( ∃ 𝑎 ∈ ℤ 𝑥 = ( 𝐿 ‘ 𝑎 ) ∧ ∃ 𝑏 ∈ ℤ 𝑦 = ( 𝐿 ‘ 𝑏 ) ) ) → ( 𝑋 ‘ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ) = ( ( 𝑋 ‘ 𝑥 ) · ( 𝑋 ‘ 𝑦 ) ) ) |
76 |
38 75
|
syldan |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑋 ‘ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ) = ( ( 𝑋 ‘ 𝑥 ) · ( 𝑋 ‘ 𝑦 ) ) ) |
77 |
76
|
ralrimivva |
⊢ ( ( 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑋 ‘ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ) = ( ( 𝑋 ‘ 𝑥 ) · ( 𝑋 ‘ 𝑦 ) ) ) |
78 |
|
ss2ralv |
⊢ ( ( Unit ‘ 𝑍 ) ⊆ 𝐵 → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑋 ‘ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ) = ( ( 𝑋 ‘ 𝑥 ) · ( 𝑋 ‘ 𝑦 ) ) → ∀ 𝑥 ∈ ( Unit ‘ 𝑍 ) ∀ 𝑦 ∈ ( Unit ‘ 𝑍 ) ( 𝑋 ‘ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ) = ( ( 𝑋 ‘ 𝑥 ) · ( 𝑋 ‘ 𝑦 ) ) ) ) |
79 |
35 77 78
|
mpsyl |
⊢ ( ( 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) → ∀ 𝑥 ∈ ( Unit ‘ 𝑍 ) ∀ 𝑦 ∈ ( Unit ‘ 𝑍 ) ( 𝑋 ‘ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ) = ( ( 𝑋 ‘ 𝑥 ) · ( 𝑋 ‘ 𝑦 ) ) ) |
80 |
|
1z |
⊢ 1 ∈ ℤ |
81 |
1 2 3 4 5 6
|
lgsdchrval |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) ∧ 1 ∈ ℤ ) → ( 𝑋 ‘ ( 𝐿 ‘ 1 ) ) = ( 1 /L 𝑁 ) ) |
82 |
80 81
|
mpan2 |
⊢ ( ( 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) → ( 𝑋 ‘ ( 𝐿 ‘ 1 ) ) = ( 1 /L 𝑁 ) ) |
83 |
|
eqid |
⊢ ( 1r ‘ 𝑍 ) = ( 1r ‘ 𝑍 ) |
84 |
5 83
|
zrh1 |
⊢ ( 𝑍 ∈ Ring → ( 𝐿 ‘ 1 ) = ( 1r ‘ 𝑍 ) ) |
85 |
48 84
|
syl |
⊢ ( ( 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) → ( 𝐿 ‘ 1 ) = ( 1r ‘ 𝑍 ) ) |
86 |
85
|
fveq2d |
⊢ ( ( 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) → ( 𝑋 ‘ ( 𝐿 ‘ 1 ) ) = ( 𝑋 ‘ ( 1r ‘ 𝑍 ) ) ) |
87 |
18
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) → 𝑁 ∈ ℤ ) |
88 |
|
1lgs |
⊢ ( 𝑁 ∈ ℤ → ( 1 /L 𝑁 ) = 1 ) |
89 |
87 88
|
syl |
⊢ ( ( 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) → ( 1 /L 𝑁 ) = 1 ) |
90 |
82 86 89
|
3eqtr3d |
⊢ ( ( 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) → ( 𝑋 ‘ ( 1r ‘ 𝑍 ) ) = 1 ) |
91 |
|
lgsne0 |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑎 /L 𝑁 ) ≠ 0 ↔ ( 𝑎 gcd 𝑁 ) = 1 ) ) |
92 |
17 19 91
|
syl2anc |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) ∧ 𝑎 ∈ ℤ ) → ( ( 𝑎 /L 𝑁 ) ≠ 0 ↔ ( 𝑎 gcd 𝑁 ) = 1 ) ) |
93 |
92
|
biimpd |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) ∧ 𝑎 ∈ ℤ ) → ( ( 𝑎 /L 𝑁 ) ≠ 0 → ( 𝑎 gcd 𝑁 ) = 1 ) ) |
94 |
16
|
neeq1d |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) ∧ 𝑎 ∈ ℤ ) → ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) ≠ 0 ↔ ( 𝑎 /L 𝑁 ) ≠ 0 ) ) |
95 |
2 34 5
|
znunit |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑎 ∈ ℤ ) → ( ( 𝐿 ‘ 𝑎 ) ∈ ( Unit ‘ 𝑍 ) ↔ ( 𝑎 gcd 𝑁 ) = 1 ) ) |
96 |
11 95
|
sylan |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) ∧ 𝑎 ∈ ℤ ) → ( ( 𝐿 ‘ 𝑎 ) ∈ ( Unit ‘ 𝑍 ) ↔ ( 𝑎 gcd 𝑁 ) = 1 ) ) |
97 |
93 94 96
|
3imtr4d |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) ∧ 𝑎 ∈ ℤ ) → ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) ≠ 0 → ( 𝐿 ‘ 𝑎 ) ∈ ( Unit ‘ 𝑍 ) ) ) |
98 |
24
|
neeq1d |
⊢ ( 𝑥 = ( 𝐿 ‘ 𝑎 ) → ( ( 𝑋 ‘ 𝑥 ) ≠ 0 ↔ ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) ≠ 0 ) ) |
99 |
|
eleq1 |
⊢ ( 𝑥 = ( 𝐿 ‘ 𝑎 ) → ( 𝑥 ∈ ( Unit ‘ 𝑍 ) ↔ ( 𝐿 ‘ 𝑎 ) ∈ ( Unit ‘ 𝑍 ) ) ) |
100 |
98 99
|
imbi12d |
⊢ ( 𝑥 = ( 𝐿 ‘ 𝑎 ) → ( ( ( 𝑋 ‘ 𝑥 ) ≠ 0 → 𝑥 ∈ ( Unit ‘ 𝑍 ) ) ↔ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) ≠ 0 → ( 𝐿 ‘ 𝑎 ) ∈ ( Unit ‘ 𝑍 ) ) ) ) |
101 |
97 100
|
syl5ibrcom |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) ∧ 𝑎 ∈ ℤ ) → ( 𝑥 = ( 𝐿 ‘ 𝑎 ) → ( ( 𝑋 ‘ 𝑥 ) ≠ 0 → 𝑥 ∈ ( Unit ‘ 𝑍 ) ) ) ) |
102 |
101
|
rexlimdva |
⊢ ( ( 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) → ( ∃ 𝑎 ∈ ℤ 𝑥 = ( 𝐿 ‘ 𝑎 ) → ( ( 𝑋 ‘ 𝑥 ) ≠ 0 → 𝑥 ∈ ( Unit ‘ 𝑍 ) ) ) ) |
103 |
102
|
imp |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) ∧ ∃ 𝑎 ∈ ℤ 𝑥 = ( 𝐿 ‘ 𝑎 ) ) → ( ( 𝑋 ‘ 𝑥 ) ≠ 0 → 𝑥 ∈ ( Unit ‘ 𝑍 ) ) ) |
104 |
15 103
|
syldan |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) ∧ 𝑥 ∈ 𝐵 ) → ( ( 𝑋 ‘ 𝑥 ) ≠ 0 → 𝑥 ∈ ( Unit ‘ 𝑍 ) ) ) |
105 |
104
|
ralrimiva |
⊢ ( ( 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) → ∀ 𝑥 ∈ 𝐵 ( ( 𝑋 ‘ 𝑥 ) ≠ 0 → 𝑥 ∈ ( Unit ‘ 𝑍 ) ) ) |
106 |
79 90 105
|
3jca |
⊢ ( ( 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) → ( ∀ 𝑥 ∈ ( Unit ‘ 𝑍 ) ∀ 𝑦 ∈ ( Unit ‘ 𝑍 ) ( 𝑋 ‘ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ) = ( ( 𝑋 ‘ 𝑥 ) · ( 𝑋 ‘ 𝑦 ) ) ∧ ( 𝑋 ‘ ( 1r ‘ 𝑍 ) ) = 1 ∧ ∀ 𝑥 ∈ 𝐵 ( ( 𝑋 ‘ 𝑥 ) ≠ 0 → 𝑥 ∈ ( Unit ‘ 𝑍 ) ) ) ) |
107 |
|
simpl |
⊢ ( ( 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) → 𝑁 ∈ ℕ ) |
108 |
1 2 4 34 107 3
|
dchrelbas3 |
⊢ ( ( 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) → ( 𝑋 ∈ 𝐷 ↔ ( 𝑋 : 𝐵 ⟶ ℂ ∧ ( ∀ 𝑥 ∈ ( Unit ‘ 𝑍 ) ∀ 𝑦 ∈ ( Unit ‘ 𝑍 ) ( 𝑋 ‘ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ) = ( ( 𝑋 ‘ 𝑥 ) · ( 𝑋 ‘ 𝑦 ) ) ∧ ( 𝑋 ‘ ( 1r ‘ 𝑍 ) ) = 1 ∧ ∀ 𝑥 ∈ 𝐵 ( ( 𝑋 ‘ 𝑥 ) ≠ 0 → 𝑥 ∈ ( Unit ‘ 𝑍 ) ) ) ) ) ) |
109 |
33 106 108
|
mpbir2and |
⊢ ( ( 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) → 𝑋 ∈ 𝐷 ) |
110 |
109 30
|
jca |
⊢ ( ( 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) → ( 𝑋 ∈ 𝐷 ∧ 𝑋 : 𝐵 ⟶ ℝ ) ) |