| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lgsdilem2.1 | ⊢ ( 𝜑  →  𝐴  ∈  ℤ ) | 
						
							| 2 |  | lgsdilem2.2 | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 3 |  | lgsdilem2.3 | ⊢ ( 𝜑  →  𝑁  ∈  ℤ ) | 
						
							| 4 |  | lgsdilem2.4 | ⊢ ( 𝜑  →  𝑀  ≠  0 ) | 
						
							| 5 |  | lgsdilem2.5 | ⊢ ( 𝜑  →  𝑁  ≠  0 ) | 
						
							| 6 |  | lgsdilem2.6 | ⊢ 𝐹  =  ( 𝑛  ∈  ℕ  ↦  if ( 𝑛  ∈  ℙ ,  ( ( 𝐴  /L  𝑛 ) ↑ ( 𝑛  pCnt  𝑀 ) ) ,  1 ) ) | 
						
							| 7 |  | mulrid | ⊢ ( 𝑘  ∈  ℂ  →  ( 𝑘  ·  1 )  =  𝑘 ) | 
						
							| 8 | 7 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℂ )  →  ( 𝑘  ·  1 )  =  𝑘 ) | 
						
							| 9 |  | nnabscl | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑀  ≠  0 )  →  ( abs ‘ 𝑀 )  ∈  ℕ ) | 
						
							| 10 | 2 4 9 | syl2anc | ⊢ ( 𝜑  →  ( abs ‘ 𝑀 )  ∈  ℕ ) | 
						
							| 11 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 12 | 10 11 | eleqtrdi | ⊢ ( 𝜑  →  ( abs ‘ 𝑀 )  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 13 | 10 | nnzd | ⊢ ( 𝜑  →  ( abs ‘ 𝑀 )  ∈  ℤ ) | 
						
							| 14 | 2 3 | zmulcld | ⊢ ( 𝜑  →  ( 𝑀  ·  𝑁 )  ∈  ℤ ) | 
						
							| 15 | 2 | zcnd | ⊢ ( 𝜑  →  𝑀  ∈  ℂ ) | 
						
							| 16 | 3 | zcnd | ⊢ ( 𝜑  →  𝑁  ∈  ℂ ) | 
						
							| 17 | 15 16 4 5 | mulne0d | ⊢ ( 𝜑  →  ( 𝑀  ·  𝑁 )  ≠  0 ) | 
						
							| 18 |  | nnabscl | ⊢ ( ( ( 𝑀  ·  𝑁 )  ∈  ℤ  ∧  ( 𝑀  ·  𝑁 )  ≠  0 )  →  ( abs ‘ ( 𝑀  ·  𝑁 ) )  ∈  ℕ ) | 
						
							| 19 | 14 17 18 | syl2anc | ⊢ ( 𝜑  →  ( abs ‘ ( 𝑀  ·  𝑁 ) )  ∈  ℕ ) | 
						
							| 20 | 19 | nnzd | ⊢ ( 𝜑  →  ( abs ‘ ( 𝑀  ·  𝑁 ) )  ∈  ℤ ) | 
						
							| 21 | 15 | abscld | ⊢ ( 𝜑  →  ( abs ‘ 𝑀 )  ∈  ℝ ) | 
						
							| 22 | 16 | abscld | ⊢ ( 𝜑  →  ( abs ‘ 𝑁 )  ∈  ℝ ) | 
						
							| 23 | 15 | absge0d | ⊢ ( 𝜑  →  0  ≤  ( abs ‘ 𝑀 ) ) | 
						
							| 24 |  | nnabscl | ⊢ ( ( 𝑁  ∈  ℤ  ∧  𝑁  ≠  0 )  →  ( abs ‘ 𝑁 )  ∈  ℕ ) | 
						
							| 25 | 3 5 24 | syl2anc | ⊢ ( 𝜑  →  ( abs ‘ 𝑁 )  ∈  ℕ ) | 
						
							| 26 | 25 | nnge1d | ⊢ ( 𝜑  →  1  ≤  ( abs ‘ 𝑁 ) ) | 
						
							| 27 | 21 22 23 26 | lemulge11d | ⊢ ( 𝜑  →  ( abs ‘ 𝑀 )  ≤  ( ( abs ‘ 𝑀 )  ·  ( abs ‘ 𝑁 ) ) ) | 
						
							| 28 | 15 16 | absmuld | ⊢ ( 𝜑  →  ( abs ‘ ( 𝑀  ·  𝑁 ) )  =  ( ( abs ‘ 𝑀 )  ·  ( abs ‘ 𝑁 ) ) ) | 
						
							| 29 | 27 28 | breqtrrd | ⊢ ( 𝜑  →  ( abs ‘ 𝑀 )  ≤  ( abs ‘ ( 𝑀  ·  𝑁 ) ) ) | 
						
							| 30 |  | eluz2 | ⊢ ( ( abs ‘ ( 𝑀  ·  𝑁 ) )  ∈  ( ℤ≥ ‘ ( abs ‘ 𝑀 ) )  ↔  ( ( abs ‘ 𝑀 )  ∈  ℤ  ∧  ( abs ‘ ( 𝑀  ·  𝑁 ) )  ∈  ℤ  ∧  ( abs ‘ 𝑀 )  ≤  ( abs ‘ ( 𝑀  ·  𝑁 ) ) ) ) | 
						
							| 31 | 13 20 29 30 | syl3anbrc | ⊢ ( 𝜑  →  ( abs ‘ ( 𝑀  ·  𝑁 ) )  ∈  ( ℤ≥ ‘ ( abs ‘ 𝑀 ) ) ) | 
						
							| 32 | 6 | lgsfcl3 | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑀  ∈  ℤ  ∧  𝑀  ≠  0 )  →  𝐹 : ℕ ⟶ ℤ ) | 
						
							| 33 | 1 2 4 32 | syl3anc | ⊢ ( 𝜑  →  𝐹 : ℕ ⟶ ℤ ) | 
						
							| 34 |  | elfznn | ⊢ ( 𝑘  ∈  ( 1 ... ( abs ‘ 𝑀 ) )  →  𝑘  ∈  ℕ ) | 
						
							| 35 |  | ffvelcdm | ⊢ ( ( 𝐹 : ℕ ⟶ ℤ  ∧  𝑘  ∈  ℕ )  →  ( 𝐹 ‘ 𝑘 )  ∈  ℤ ) | 
						
							| 36 | 33 34 35 | syl2an | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 1 ... ( abs ‘ 𝑀 ) ) )  →  ( 𝐹 ‘ 𝑘 )  ∈  ℤ ) | 
						
							| 37 | 36 | zcnd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 1 ... ( abs ‘ 𝑀 ) ) )  →  ( 𝐹 ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 38 |  | mulcl | ⊢ ( ( 𝑘  ∈  ℂ  ∧  𝑥  ∈  ℂ )  →  ( 𝑘  ·  𝑥 )  ∈  ℂ ) | 
						
							| 39 | 38 | adantl | ⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  ℂ  ∧  𝑥  ∈  ℂ ) )  →  ( 𝑘  ·  𝑥 )  ∈  ℂ ) | 
						
							| 40 | 12 37 39 | seqcl | ⊢ ( 𝜑  →  ( seq 1 (  ·  ,  𝐹 ) ‘ ( abs ‘ 𝑀 ) )  ∈  ℂ ) | 
						
							| 41 | 10 | peano2nnd | ⊢ ( 𝜑  →  ( ( abs ‘ 𝑀 )  +  1 )  ∈  ℕ ) | 
						
							| 42 |  | elfzuz | ⊢ ( 𝑘  ∈  ( ( ( abs ‘ 𝑀 )  +  1 ) ... ( abs ‘ ( 𝑀  ·  𝑁 ) ) )  →  𝑘  ∈  ( ℤ≥ ‘ ( ( abs ‘ 𝑀 )  +  1 ) ) ) | 
						
							| 43 |  | eluznn | ⊢ ( ( ( ( abs ‘ 𝑀 )  +  1 )  ∈  ℕ  ∧  𝑘  ∈  ( ℤ≥ ‘ ( ( abs ‘ 𝑀 )  +  1 ) ) )  →  𝑘  ∈  ℕ ) | 
						
							| 44 | 41 42 43 | syl2an | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( ( abs ‘ 𝑀 )  +  1 ) ... ( abs ‘ ( 𝑀  ·  𝑁 ) ) ) )  →  𝑘  ∈  ℕ ) | 
						
							| 45 |  | eleq1w | ⊢ ( 𝑛  =  𝑘  →  ( 𝑛  ∈  ℙ  ↔  𝑘  ∈  ℙ ) ) | 
						
							| 46 |  | oveq2 | ⊢ ( 𝑛  =  𝑘  →  ( 𝐴  /L  𝑛 )  =  ( 𝐴  /L  𝑘 ) ) | 
						
							| 47 |  | oveq1 | ⊢ ( 𝑛  =  𝑘  →  ( 𝑛  pCnt  𝑀 )  =  ( 𝑘  pCnt  𝑀 ) ) | 
						
							| 48 | 46 47 | oveq12d | ⊢ ( 𝑛  =  𝑘  →  ( ( 𝐴  /L  𝑛 ) ↑ ( 𝑛  pCnt  𝑀 ) )  =  ( ( 𝐴  /L  𝑘 ) ↑ ( 𝑘  pCnt  𝑀 ) ) ) | 
						
							| 49 | 45 48 | ifbieq1d | ⊢ ( 𝑛  =  𝑘  →  if ( 𝑛  ∈  ℙ ,  ( ( 𝐴  /L  𝑛 ) ↑ ( 𝑛  pCnt  𝑀 ) ) ,  1 )  =  if ( 𝑘  ∈  ℙ ,  ( ( 𝐴  /L  𝑘 ) ↑ ( 𝑘  pCnt  𝑀 ) ) ,  1 ) ) | 
						
							| 50 |  | ovex | ⊢ ( ( 𝐴  /L  𝑘 ) ↑ ( 𝑘  pCnt  𝑀 ) )  ∈  V | 
						
							| 51 |  | 1ex | ⊢ 1  ∈  V | 
						
							| 52 | 50 51 | ifex | ⊢ if ( 𝑘  ∈  ℙ ,  ( ( 𝐴  /L  𝑘 ) ↑ ( 𝑘  pCnt  𝑀 ) ) ,  1 )  ∈  V | 
						
							| 53 | 49 6 52 | fvmpt | ⊢ ( 𝑘  ∈  ℕ  →  ( 𝐹 ‘ 𝑘 )  =  if ( 𝑘  ∈  ℙ ,  ( ( 𝐴  /L  𝑘 ) ↑ ( 𝑘  pCnt  𝑀 ) ) ,  1 ) ) | 
						
							| 54 | 44 53 | syl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( ( abs ‘ 𝑀 )  +  1 ) ... ( abs ‘ ( 𝑀  ·  𝑁 ) ) ) )  →  ( 𝐹 ‘ 𝑘 )  =  if ( 𝑘  ∈  ℙ ,  ( ( 𝐴  /L  𝑘 ) ↑ ( 𝑘  pCnt  𝑀 ) ) ,  1 ) ) | 
						
							| 55 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( ( ( abs ‘ 𝑀 )  +  1 ) ... ( abs ‘ ( 𝑀  ·  𝑁 ) ) ) )  ∧  𝑘  ∈  ℙ )  →  𝑘  ∈  ℙ ) | 
						
							| 56 | 2 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( ( ( abs ‘ 𝑀 )  +  1 ) ... ( abs ‘ ( 𝑀  ·  𝑁 ) ) ) )  ∧  𝑘  ∈  ℙ )  →  𝑀  ∈  ℤ ) | 
						
							| 57 |  | zq | ⊢ ( 𝑀  ∈  ℤ  →  𝑀  ∈  ℚ ) | 
						
							| 58 | 56 57 | syl | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( ( ( abs ‘ 𝑀 )  +  1 ) ... ( abs ‘ ( 𝑀  ·  𝑁 ) ) ) )  ∧  𝑘  ∈  ℙ )  →  𝑀  ∈  ℚ ) | 
						
							| 59 |  | pcabs | ⊢ ( ( 𝑘  ∈  ℙ  ∧  𝑀  ∈  ℚ )  →  ( 𝑘  pCnt  ( abs ‘ 𝑀 ) )  =  ( 𝑘  pCnt  𝑀 ) ) | 
						
							| 60 | 55 58 59 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( ( ( abs ‘ 𝑀 )  +  1 ) ... ( abs ‘ ( 𝑀  ·  𝑁 ) ) ) )  ∧  𝑘  ∈  ℙ )  →  ( 𝑘  pCnt  ( abs ‘ 𝑀 ) )  =  ( 𝑘  pCnt  𝑀 ) ) | 
						
							| 61 |  | elfzle1 | ⊢ ( 𝑘  ∈  ( ( ( abs ‘ 𝑀 )  +  1 ) ... ( abs ‘ ( 𝑀  ·  𝑁 ) ) )  →  ( ( abs ‘ 𝑀 )  +  1 )  ≤  𝑘 ) | 
						
							| 62 | 61 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( ( abs ‘ 𝑀 )  +  1 ) ... ( abs ‘ ( 𝑀  ·  𝑁 ) ) ) )  →  ( ( abs ‘ 𝑀 )  +  1 )  ≤  𝑘 ) | 
						
							| 63 |  | elfzelz | ⊢ ( 𝑘  ∈  ( ( ( abs ‘ 𝑀 )  +  1 ) ... ( abs ‘ ( 𝑀  ·  𝑁 ) ) )  →  𝑘  ∈  ℤ ) | 
						
							| 64 |  | zltp1le | ⊢ ( ( ( abs ‘ 𝑀 )  ∈  ℤ  ∧  𝑘  ∈  ℤ )  →  ( ( abs ‘ 𝑀 )  <  𝑘  ↔  ( ( abs ‘ 𝑀 )  +  1 )  ≤  𝑘 ) ) | 
						
							| 65 | 13 63 64 | syl2an | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( ( abs ‘ 𝑀 )  +  1 ) ... ( abs ‘ ( 𝑀  ·  𝑁 ) ) ) )  →  ( ( abs ‘ 𝑀 )  <  𝑘  ↔  ( ( abs ‘ 𝑀 )  +  1 )  ≤  𝑘 ) ) | 
						
							| 66 | 62 65 | mpbird | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( ( abs ‘ 𝑀 )  +  1 ) ... ( abs ‘ ( 𝑀  ·  𝑁 ) ) ) )  →  ( abs ‘ 𝑀 )  <  𝑘 ) | 
						
							| 67 | 21 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( ( abs ‘ 𝑀 )  +  1 ) ... ( abs ‘ ( 𝑀  ·  𝑁 ) ) ) )  →  ( abs ‘ 𝑀 )  ∈  ℝ ) | 
						
							| 68 | 63 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( ( abs ‘ 𝑀 )  +  1 ) ... ( abs ‘ ( 𝑀  ·  𝑁 ) ) ) )  →  𝑘  ∈  ℤ ) | 
						
							| 69 | 68 | zred | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( ( abs ‘ 𝑀 )  +  1 ) ... ( abs ‘ ( 𝑀  ·  𝑁 ) ) ) )  →  𝑘  ∈  ℝ ) | 
						
							| 70 | 67 69 | ltnled | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( ( abs ‘ 𝑀 )  +  1 ) ... ( abs ‘ ( 𝑀  ·  𝑁 ) ) ) )  →  ( ( abs ‘ 𝑀 )  <  𝑘  ↔  ¬  𝑘  ≤  ( abs ‘ 𝑀 ) ) ) | 
						
							| 71 | 66 70 | mpbid | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( ( abs ‘ 𝑀 )  +  1 ) ... ( abs ‘ ( 𝑀  ·  𝑁 ) ) ) )  →  ¬  𝑘  ≤  ( abs ‘ 𝑀 ) ) | 
						
							| 72 | 71 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( ( ( abs ‘ 𝑀 )  +  1 ) ... ( abs ‘ ( 𝑀  ·  𝑁 ) ) ) )  ∧  𝑘  ∈  ℙ )  →  ¬  𝑘  ≤  ( abs ‘ 𝑀 ) ) | 
						
							| 73 |  | prmz | ⊢ ( 𝑘  ∈  ℙ  →  𝑘  ∈  ℤ ) | 
						
							| 74 | 73 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( ( ( abs ‘ 𝑀 )  +  1 ) ... ( abs ‘ ( 𝑀  ·  𝑁 ) ) ) )  ∧  𝑘  ∈  ℙ )  →  𝑘  ∈  ℤ ) | 
						
							| 75 | 4 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( ( ( abs ‘ 𝑀 )  +  1 ) ... ( abs ‘ ( 𝑀  ·  𝑁 ) ) ) )  ∧  𝑘  ∈  ℙ )  →  𝑀  ≠  0 ) | 
						
							| 76 | 56 75 9 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( ( ( abs ‘ 𝑀 )  +  1 ) ... ( abs ‘ ( 𝑀  ·  𝑁 ) ) ) )  ∧  𝑘  ∈  ℙ )  →  ( abs ‘ 𝑀 )  ∈  ℕ ) | 
						
							| 77 |  | dvdsle | ⊢ ( ( 𝑘  ∈  ℤ  ∧  ( abs ‘ 𝑀 )  ∈  ℕ )  →  ( 𝑘  ∥  ( abs ‘ 𝑀 )  →  𝑘  ≤  ( abs ‘ 𝑀 ) ) ) | 
						
							| 78 | 74 76 77 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( ( ( abs ‘ 𝑀 )  +  1 ) ... ( abs ‘ ( 𝑀  ·  𝑁 ) ) ) )  ∧  𝑘  ∈  ℙ )  →  ( 𝑘  ∥  ( abs ‘ 𝑀 )  →  𝑘  ≤  ( abs ‘ 𝑀 ) ) ) | 
						
							| 79 | 72 78 | mtod | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( ( ( abs ‘ 𝑀 )  +  1 ) ... ( abs ‘ ( 𝑀  ·  𝑁 ) ) ) )  ∧  𝑘  ∈  ℙ )  →  ¬  𝑘  ∥  ( abs ‘ 𝑀 ) ) | 
						
							| 80 |  | pceq0 | ⊢ ( ( 𝑘  ∈  ℙ  ∧  ( abs ‘ 𝑀 )  ∈  ℕ )  →  ( ( 𝑘  pCnt  ( abs ‘ 𝑀 ) )  =  0  ↔  ¬  𝑘  ∥  ( abs ‘ 𝑀 ) ) ) | 
						
							| 81 | 55 76 80 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( ( ( abs ‘ 𝑀 )  +  1 ) ... ( abs ‘ ( 𝑀  ·  𝑁 ) ) ) )  ∧  𝑘  ∈  ℙ )  →  ( ( 𝑘  pCnt  ( abs ‘ 𝑀 ) )  =  0  ↔  ¬  𝑘  ∥  ( abs ‘ 𝑀 ) ) ) | 
						
							| 82 | 79 81 | mpbird | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( ( ( abs ‘ 𝑀 )  +  1 ) ... ( abs ‘ ( 𝑀  ·  𝑁 ) ) ) )  ∧  𝑘  ∈  ℙ )  →  ( 𝑘  pCnt  ( abs ‘ 𝑀 ) )  =  0 ) | 
						
							| 83 | 60 82 | eqtr3d | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( ( ( abs ‘ 𝑀 )  +  1 ) ... ( abs ‘ ( 𝑀  ·  𝑁 ) ) ) )  ∧  𝑘  ∈  ℙ )  →  ( 𝑘  pCnt  𝑀 )  =  0 ) | 
						
							| 84 | 83 | oveq2d | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( ( ( abs ‘ 𝑀 )  +  1 ) ... ( abs ‘ ( 𝑀  ·  𝑁 ) ) ) )  ∧  𝑘  ∈  ℙ )  →  ( ( 𝐴  /L  𝑘 ) ↑ ( 𝑘  pCnt  𝑀 ) )  =  ( ( 𝐴  /L  𝑘 ) ↑ 0 ) ) | 
						
							| 85 | 1 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( ( ( abs ‘ 𝑀 )  +  1 ) ... ( abs ‘ ( 𝑀  ·  𝑁 ) ) ) )  ∧  𝑘  ∈  ℙ )  →  𝐴  ∈  ℤ ) | 
						
							| 86 |  | lgscl | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑘  ∈  ℤ )  →  ( 𝐴  /L  𝑘 )  ∈  ℤ ) | 
						
							| 87 | 85 74 86 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( ( ( abs ‘ 𝑀 )  +  1 ) ... ( abs ‘ ( 𝑀  ·  𝑁 ) ) ) )  ∧  𝑘  ∈  ℙ )  →  ( 𝐴  /L  𝑘 )  ∈  ℤ ) | 
						
							| 88 | 87 | zcnd | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( ( ( abs ‘ 𝑀 )  +  1 ) ... ( abs ‘ ( 𝑀  ·  𝑁 ) ) ) )  ∧  𝑘  ∈  ℙ )  →  ( 𝐴  /L  𝑘 )  ∈  ℂ ) | 
						
							| 89 | 88 | exp0d | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( ( ( abs ‘ 𝑀 )  +  1 ) ... ( abs ‘ ( 𝑀  ·  𝑁 ) ) ) )  ∧  𝑘  ∈  ℙ )  →  ( ( 𝐴  /L  𝑘 ) ↑ 0 )  =  1 ) | 
						
							| 90 | 84 89 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( ( ( abs ‘ 𝑀 )  +  1 ) ... ( abs ‘ ( 𝑀  ·  𝑁 ) ) ) )  ∧  𝑘  ∈  ℙ )  →  ( ( 𝐴  /L  𝑘 ) ↑ ( 𝑘  pCnt  𝑀 ) )  =  1 ) | 
						
							| 91 | 90 | ifeq1da | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( ( abs ‘ 𝑀 )  +  1 ) ... ( abs ‘ ( 𝑀  ·  𝑁 ) ) ) )  →  if ( 𝑘  ∈  ℙ ,  ( ( 𝐴  /L  𝑘 ) ↑ ( 𝑘  pCnt  𝑀 ) ) ,  1 )  =  if ( 𝑘  ∈  ℙ ,  1 ,  1 ) ) | 
						
							| 92 |  | ifid | ⊢ if ( 𝑘  ∈  ℙ ,  1 ,  1 )  =  1 | 
						
							| 93 | 91 92 | eqtrdi | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( ( abs ‘ 𝑀 )  +  1 ) ... ( abs ‘ ( 𝑀  ·  𝑁 ) ) ) )  →  if ( 𝑘  ∈  ℙ ,  ( ( 𝐴  /L  𝑘 ) ↑ ( 𝑘  pCnt  𝑀 ) ) ,  1 )  =  1 ) | 
						
							| 94 | 54 93 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( ( abs ‘ 𝑀 )  +  1 ) ... ( abs ‘ ( 𝑀  ·  𝑁 ) ) ) )  →  ( 𝐹 ‘ 𝑘 )  =  1 ) | 
						
							| 95 | 8 12 31 40 94 | seqid2 | ⊢ ( 𝜑  →  ( seq 1 (  ·  ,  𝐹 ) ‘ ( abs ‘ 𝑀 ) )  =  ( seq 1 (  ·  ,  𝐹 ) ‘ ( abs ‘ ( 𝑀  ·  𝑁 ) ) ) ) |