| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq2 |
⊢ ( 𝑥 = 𝑁 → ( 𝐴 /L 𝑥 ) = ( 𝐴 /L 𝑁 ) ) |
| 2 |
1
|
oveq1d |
⊢ ( 𝑥 = 𝑁 → ( ( 𝐴 /L 𝑥 ) · ( 𝐴 /L 0 ) ) = ( ( 𝐴 /L 𝑁 ) · ( 𝐴 /L 0 ) ) ) |
| 3 |
2
|
eqeq2d |
⊢ ( 𝑥 = 𝑁 → ( ( 𝐴 /L 0 ) = ( ( 𝐴 /L 𝑥 ) · ( 𝐴 /L 0 ) ) ↔ ( 𝐴 /L 0 ) = ( ( 𝐴 /L 𝑁 ) · ( 𝐴 /L 0 ) ) ) ) |
| 4 |
|
sq1 |
⊢ ( 1 ↑ 2 ) = 1 |
| 5 |
4
|
eqeq2i |
⊢ ( ( 𝐴 ↑ 2 ) = ( 1 ↑ 2 ) ↔ ( 𝐴 ↑ 2 ) = 1 ) |
| 6 |
|
nn0re |
⊢ ( 𝐴 ∈ ℕ0 → 𝐴 ∈ ℝ ) |
| 7 |
|
nn0ge0 |
⊢ ( 𝐴 ∈ ℕ0 → 0 ≤ 𝐴 ) |
| 8 |
|
1re |
⊢ 1 ∈ ℝ |
| 9 |
|
0le1 |
⊢ 0 ≤ 1 |
| 10 |
|
sq11 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 1 ∈ ℝ ∧ 0 ≤ 1 ) ) → ( ( 𝐴 ↑ 2 ) = ( 1 ↑ 2 ) ↔ 𝐴 = 1 ) ) |
| 11 |
8 9 10
|
mpanr12 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( ( 𝐴 ↑ 2 ) = ( 1 ↑ 2 ) ↔ 𝐴 = 1 ) ) |
| 12 |
6 7 11
|
syl2anc |
⊢ ( 𝐴 ∈ ℕ0 → ( ( 𝐴 ↑ 2 ) = ( 1 ↑ 2 ) ↔ 𝐴 = 1 ) ) |
| 13 |
12
|
adantr |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝑥 ∈ ℤ ) → ( ( 𝐴 ↑ 2 ) = ( 1 ↑ 2 ) ↔ 𝐴 = 1 ) ) |
| 14 |
5 13
|
bitr3id |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝑥 ∈ ℤ ) → ( ( 𝐴 ↑ 2 ) = 1 ↔ 𝐴 = 1 ) ) |
| 15 |
14
|
biimpa |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝑥 ∈ ℤ ) ∧ ( 𝐴 ↑ 2 ) = 1 ) → 𝐴 = 1 ) |
| 16 |
15
|
oveq1d |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝑥 ∈ ℤ ) ∧ ( 𝐴 ↑ 2 ) = 1 ) → ( 𝐴 /L 𝑥 ) = ( 1 /L 𝑥 ) ) |
| 17 |
|
1lgs |
⊢ ( 𝑥 ∈ ℤ → ( 1 /L 𝑥 ) = 1 ) |
| 18 |
17
|
ad2antlr |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝑥 ∈ ℤ ) ∧ ( 𝐴 ↑ 2 ) = 1 ) → ( 1 /L 𝑥 ) = 1 ) |
| 19 |
16 18
|
eqtrd |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝑥 ∈ ℤ ) ∧ ( 𝐴 ↑ 2 ) = 1 ) → ( 𝐴 /L 𝑥 ) = 1 ) |
| 20 |
19
|
oveq1d |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝑥 ∈ ℤ ) ∧ ( 𝐴 ↑ 2 ) = 1 ) → ( ( 𝐴 /L 𝑥 ) · ( 𝐴 /L 0 ) ) = ( 1 · ( 𝐴 /L 0 ) ) ) |
| 21 |
|
nn0z |
⊢ ( 𝐴 ∈ ℕ0 → 𝐴 ∈ ℤ ) |
| 22 |
21
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝑥 ∈ ℤ ) ∧ ( 𝐴 ↑ 2 ) = 1 ) → 𝐴 ∈ ℤ ) |
| 23 |
|
0z |
⊢ 0 ∈ ℤ |
| 24 |
|
lgscl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 0 ∈ ℤ ) → ( 𝐴 /L 0 ) ∈ ℤ ) |
| 25 |
22 23 24
|
sylancl |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝑥 ∈ ℤ ) ∧ ( 𝐴 ↑ 2 ) = 1 ) → ( 𝐴 /L 0 ) ∈ ℤ ) |
| 26 |
25
|
zcnd |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝑥 ∈ ℤ ) ∧ ( 𝐴 ↑ 2 ) = 1 ) → ( 𝐴 /L 0 ) ∈ ℂ ) |
| 27 |
26
|
mullidd |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝑥 ∈ ℤ ) ∧ ( 𝐴 ↑ 2 ) = 1 ) → ( 1 · ( 𝐴 /L 0 ) ) = ( 𝐴 /L 0 ) ) |
| 28 |
20 27
|
eqtr2d |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝑥 ∈ ℤ ) ∧ ( 𝐴 ↑ 2 ) = 1 ) → ( 𝐴 /L 0 ) = ( ( 𝐴 /L 𝑥 ) · ( 𝐴 /L 0 ) ) ) |
| 29 |
|
lgscl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑥 ∈ ℤ ) → ( 𝐴 /L 𝑥 ) ∈ ℤ ) |
| 30 |
21 29
|
sylan |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝑥 ∈ ℤ ) → ( 𝐴 /L 𝑥 ) ∈ ℤ ) |
| 31 |
30
|
zcnd |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝑥 ∈ ℤ ) → ( 𝐴 /L 𝑥 ) ∈ ℂ ) |
| 32 |
31
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝑥 ∈ ℤ ) ∧ ( 𝐴 ↑ 2 ) ≠ 1 ) → ( 𝐴 /L 𝑥 ) ∈ ℂ ) |
| 33 |
32
|
mul01d |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝑥 ∈ ℤ ) ∧ ( 𝐴 ↑ 2 ) ≠ 1 ) → ( ( 𝐴 /L 𝑥 ) · 0 ) = 0 ) |
| 34 |
21
|
adantr |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝑥 ∈ ℤ ) → 𝐴 ∈ ℤ ) |
| 35 |
|
lgs0 |
⊢ ( 𝐴 ∈ ℤ → ( 𝐴 /L 0 ) = if ( ( 𝐴 ↑ 2 ) = 1 , 1 , 0 ) ) |
| 36 |
34 35
|
syl |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝑥 ∈ ℤ ) → ( 𝐴 /L 0 ) = if ( ( 𝐴 ↑ 2 ) = 1 , 1 , 0 ) ) |
| 37 |
|
ifnefalse |
⊢ ( ( 𝐴 ↑ 2 ) ≠ 1 → if ( ( 𝐴 ↑ 2 ) = 1 , 1 , 0 ) = 0 ) |
| 38 |
36 37
|
sylan9eq |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝑥 ∈ ℤ ) ∧ ( 𝐴 ↑ 2 ) ≠ 1 ) → ( 𝐴 /L 0 ) = 0 ) |
| 39 |
38
|
oveq2d |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝑥 ∈ ℤ ) ∧ ( 𝐴 ↑ 2 ) ≠ 1 ) → ( ( 𝐴 /L 𝑥 ) · ( 𝐴 /L 0 ) ) = ( ( 𝐴 /L 𝑥 ) · 0 ) ) |
| 40 |
33 39 38
|
3eqtr4rd |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝑥 ∈ ℤ ) ∧ ( 𝐴 ↑ 2 ) ≠ 1 ) → ( 𝐴 /L 0 ) = ( ( 𝐴 /L 𝑥 ) · ( 𝐴 /L 0 ) ) ) |
| 41 |
28 40
|
pm2.61dane |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝑥 ∈ ℤ ) → ( 𝐴 /L 0 ) = ( ( 𝐴 /L 𝑥 ) · ( 𝐴 /L 0 ) ) ) |
| 42 |
41
|
ralrimiva |
⊢ ( 𝐴 ∈ ℕ0 → ∀ 𝑥 ∈ ℤ ( 𝐴 /L 0 ) = ( ( 𝐴 /L 𝑥 ) · ( 𝐴 /L 0 ) ) ) |
| 43 |
42
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ∀ 𝑥 ∈ ℤ ( 𝐴 /L 0 ) = ( ( 𝐴 /L 𝑥 ) · ( 𝐴 /L 0 ) ) ) |
| 44 |
|
simp3 |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → 𝑁 ∈ ℤ ) |
| 45 |
3 43 44
|
rspcdva |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝐴 /L 0 ) = ( ( 𝐴 /L 𝑁 ) · ( 𝐴 /L 0 ) ) ) |
| 46 |
45
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑀 = 0 ) → ( 𝐴 /L 0 ) = ( ( 𝐴 /L 𝑁 ) · ( 𝐴 /L 0 ) ) ) |
| 47 |
21
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → 𝐴 ∈ ℤ ) |
| 48 |
47 23 24
|
sylancl |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝐴 /L 0 ) ∈ ℤ ) |
| 49 |
48
|
zcnd |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝐴 /L 0 ) ∈ ℂ ) |
| 50 |
49
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑀 = 0 ) → ( 𝐴 /L 0 ) ∈ ℂ ) |
| 51 |
|
lgscl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝐴 /L 𝑁 ) ∈ ℤ ) |
| 52 |
47 44 51
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝐴 /L 𝑁 ) ∈ ℤ ) |
| 53 |
52
|
zcnd |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝐴 /L 𝑁 ) ∈ ℂ ) |
| 54 |
53
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑀 = 0 ) → ( 𝐴 /L 𝑁 ) ∈ ℂ ) |
| 55 |
50 54
|
mulcomd |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑀 = 0 ) → ( ( 𝐴 /L 0 ) · ( 𝐴 /L 𝑁 ) ) = ( ( 𝐴 /L 𝑁 ) · ( 𝐴 /L 0 ) ) ) |
| 56 |
46 55
|
eqtr4d |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑀 = 0 ) → ( 𝐴 /L 0 ) = ( ( 𝐴 /L 0 ) · ( 𝐴 /L 𝑁 ) ) ) |
| 57 |
|
oveq1 |
⊢ ( 𝑀 = 0 → ( 𝑀 · 𝑁 ) = ( 0 · 𝑁 ) ) |
| 58 |
44
|
zcnd |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → 𝑁 ∈ ℂ ) |
| 59 |
58
|
mul02d |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 0 · 𝑁 ) = 0 ) |
| 60 |
57 59
|
sylan9eqr |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑀 = 0 ) → ( 𝑀 · 𝑁 ) = 0 ) |
| 61 |
60
|
oveq2d |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑀 = 0 ) → ( 𝐴 /L ( 𝑀 · 𝑁 ) ) = ( 𝐴 /L 0 ) ) |
| 62 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑀 = 0 ) → 𝑀 = 0 ) |
| 63 |
62
|
oveq2d |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑀 = 0 ) → ( 𝐴 /L 𝑀 ) = ( 𝐴 /L 0 ) ) |
| 64 |
63
|
oveq1d |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑀 = 0 ) → ( ( 𝐴 /L 𝑀 ) · ( 𝐴 /L 𝑁 ) ) = ( ( 𝐴 /L 0 ) · ( 𝐴 /L 𝑁 ) ) ) |
| 65 |
56 61 64
|
3eqtr4d |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑀 = 0 ) → ( 𝐴 /L ( 𝑀 · 𝑁 ) ) = ( ( 𝐴 /L 𝑀 ) · ( 𝐴 /L 𝑁 ) ) ) |
| 66 |
|
oveq2 |
⊢ ( 𝑥 = 𝑀 → ( 𝐴 /L 𝑥 ) = ( 𝐴 /L 𝑀 ) ) |
| 67 |
66
|
oveq1d |
⊢ ( 𝑥 = 𝑀 → ( ( 𝐴 /L 𝑥 ) · ( 𝐴 /L 0 ) ) = ( ( 𝐴 /L 𝑀 ) · ( 𝐴 /L 0 ) ) ) |
| 68 |
67
|
eqeq2d |
⊢ ( 𝑥 = 𝑀 → ( ( 𝐴 /L 0 ) = ( ( 𝐴 /L 𝑥 ) · ( 𝐴 /L 0 ) ) ↔ ( 𝐴 /L 0 ) = ( ( 𝐴 /L 𝑀 ) · ( 𝐴 /L 0 ) ) ) ) |
| 69 |
|
simp2 |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → 𝑀 ∈ ℤ ) |
| 70 |
68 43 69
|
rspcdva |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝐴 /L 0 ) = ( ( 𝐴 /L 𝑀 ) · ( 𝐴 /L 0 ) ) ) |
| 71 |
70
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑁 = 0 ) → ( 𝐴 /L 0 ) = ( ( 𝐴 /L 𝑀 ) · ( 𝐴 /L 0 ) ) ) |
| 72 |
|
oveq2 |
⊢ ( 𝑁 = 0 → ( 𝑀 · 𝑁 ) = ( 𝑀 · 0 ) ) |
| 73 |
69
|
zcnd |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → 𝑀 ∈ ℂ ) |
| 74 |
73
|
mul01d |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 · 0 ) = 0 ) |
| 75 |
72 74
|
sylan9eqr |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑁 = 0 ) → ( 𝑀 · 𝑁 ) = 0 ) |
| 76 |
75
|
oveq2d |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑁 = 0 ) → ( 𝐴 /L ( 𝑀 · 𝑁 ) ) = ( 𝐴 /L 0 ) ) |
| 77 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑁 = 0 ) → 𝑁 = 0 ) |
| 78 |
77
|
oveq2d |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑁 = 0 ) → ( 𝐴 /L 𝑁 ) = ( 𝐴 /L 0 ) ) |
| 79 |
78
|
oveq2d |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑁 = 0 ) → ( ( 𝐴 /L 𝑀 ) · ( 𝐴 /L 𝑁 ) ) = ( ( 𝐴 /L 𝑀 ) · ( 𝐴 /L 0 ) ) ) |
| 80 |
71 76 79
|
3eqtr4d |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑁 = 0 ) → ( 𝐴 /L ( 𝑀 · 𝑁 ) ) = ( ( 𝐴 /L 𝑀 ) · ( 𝐴 /L 𝑁 ) ) ) |
| 81 |
|
lgsdi |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑀 ≠ 0 ∧ 𝑁 ≠ 0 ) ) → ( 𝐴 /L ( 𝑀 · 𝑁 ) ) = ( ( 𝐴 /L 𝑀 ) · ( 𝐴 /L 𝑁 ) ) ) |
| 82 |
21 81
|
syl3anl1 |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑀 ≠ 0 ∧ 𝑁 ≠ 0 ) ) → ( 𝐴 /L ( 𝑀 · 𝑁 ) ) = ( ( 𝐴 /L 𝑀 ) · ( 𝐴 /L 𝑁 ) ) ) |
| 83 |
65 80 82
|
pm2.61da2ne |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝐴 /L ( 𝑀 · 𝑁 ) ) = ( ( 𝐴 /L 𝑀 ) · ( 𝐴 /L 𝑁 ) ) ) |