| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0cn |
⊢ 0 ∈ ℂ |
| 2 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 3 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
| 4 |
2 3
|
ifcli |
⊢ if ( ( 𝐵 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ∈ ℂ |
| 5 |
1 4
|
ifcli |
⊢ if ( 2 ∥ 𝐵 , 0 , if ( ( 𝐵 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) ∈ ℂ |
| 6 |
5
|
mul02i |
⊢ ( 0 · if ( 2 ∥ 𝐵 , 0 , if ( ( 𝐵 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) ) = 0 |
| 7 |
|
iftrue |
⊢ ( 2 ∥ 𝐴 → if ( 2 ∥ 𝐴 , 0 , if ( ( 𝐴 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) = 0 ) |
| 8 |
7
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 2 ∥ 𝐴 ) → if ( 2 ∥ 𝐴 , 0 , if ( ( 𝐴 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) = 0 ) |
| 9 |
8
|
oveq1d |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 2 ∥ 𝐴 ) → ( if ( 2 ∥ 𝐴 , 0 , if ( ( 𝐴 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) · if ( 2 ∥ 𝐵 , 0 , if ( ( 𝐵 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) ) = ( 0 · if ( 2 ∥ 𝐵 , 0 , if ( ( 𝐵 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) ) ) |
| 10 |
|
2z |
⊢ 2 ∈ ℤ |
| 11 |
|
dvdsmultr1 |
⊢ ( ( 2 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 2 ∥ 𝐴 → 2 ∥ ( 𝐴 · 𝐵 ) ) ) |
| 12 |
10 11
|
mp3an1 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 2 ∥ 𝐴 → 2 ∥ ( 𝐴 · 𝐵 ) ) ) |
| 13 |
12
|
imp |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 2 ∥ 𝐴 ) → 2 ∥ ( 𝐴 · 𝐵 ) ) |
| 14 |
13
|
iftrued |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 2 ∥ 𝐴 ) → if ( 2 ∥ ( 𝐴 · 𝐵 ) , 0 , if ( ( ( 𝐴 · 𝐵 ) mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) = 0 ) |
| 15 |
6 9 14
|
3eqtr4a |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 2 ∥ 𝐴 ) → ( if ( 2 ∥ 𝐴 , 0 , if ( ( 𝐴 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) · if ( 2 ∥ 𝐵 , 0 , if ( ( 𝐵 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) ) = if ( 2 ∥ ( 𝐴 · 𝐵 ) , 0 , if ( ( ( 𝐴 · 𝐵 ) mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) ) |
| 16 |
2 3
|
ifcli |
⊢ if ( ( 𝐴 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ∈ ℂ |
| 17 |
1 16
|
ifcli |
⊢ if ( 2 ∥ 𝐴 , 0 , if ( ( 𝐴 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) ∈ ℂ |
| 18 |
17
|
mul01i |
⊢ ( if ( 2 ∥ 𝐴 , 0 , if ( ( 𝐴 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) · 0 ) = 0 |
| 19 |
|
iftrue |
⊢ ( 2 ∥ 𝐵 → if ( 2 ∥ 𝐵 , 0 , if ( ( 𝐵 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) = 0 ) |
| 20 |
19
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 2 ∥ 𝐵 ) → if ( 2 ∥ 𝐵 , 0 , if ( ( 𝐵 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) = 0 ) |
| 21 |
20
|
oveq2d |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 2 ∥ 𝐵 ) → ( if ( 2 ∥ 𝐴 , 0 , if ( ( 𝐴 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) · if ( 2 ∥ 𝐵 , 0 , if ( ( 𝐵 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) ) = ( if ( 2 ∥ 𝐴 , 0 , if ( ( 𝐴 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) · 0 ) ) |
| 22 |
|
dvdsmultr2 |
⊢ ( ( 2 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 2 ∥ 𝐵 → 2 ∥ ( 𝐴 · 𝐵 ) ) ) |
| 23 |
10 22
|
mp3an1 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 2 ∥ 𝐵 → 2 ∥ ( 𝐴 · 𝐵 ) ) ) |
| 24 |
23
|
imp |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 2 ∥ 𝐵 ) → 2 ∥ ( 𝐴 · 𝐵 ) ) |
| 25 |
24
|
iftrued |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 2 ∥ 𝐵 ) → if ( 2 ∥ ( 𝐴 · 𝐵 ) , 0 , if ( ( ( 𝐴 · 𝐵 ) mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) = 0 ) |
| 26 |
18 21 25
|
3eqtr4a |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 2 ∥ 𝐵 ) → ( if ( 2 ∥ 𝐴 , 0 , if ( ( 𝐴 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) · if ( 2 ∥ 𝐵 , 0 , if ( ( 𝐵 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) ) = if ( 2 ∥ ( 𝐴 · 𝐵 ) , 0 , if ( ( ( 𝐴 · 𝐵 ) mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) ) |
| 27 |
4
|
mullidi |
⊢ ( 1 · if ( ( 𝐵 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) = if ( ( 𝐵 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) |
| 28 |
|
iftrue |
⊢ ( ( 𝐴 mod 8 ) ∈ { 1 , 7 } → if ( ( 𝐴 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) = 1 ) |
| 29 |
28
|
adantl |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵 ) ) ∧ ( 𝐴 mod 8 ) ∈ { 1 , 7 } ) → if ( ( 𝐴 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) = 1 ) |
| 30 |
29
|
oveq1d |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵 ) ) ∧ ( 𝐴 mod 8 ) ∈ { 1 , 7 } ) → ( if ( ( 𝐴 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) · if ( ( 𝐵 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) = ( 1 · if ( ( 𝐵 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) ) |
| 31 |
|
lgsdir2lem4 |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐴 mod 8 ) ∈ { 1 , 7 } ) → ( ( ( 𝐴 · 𝐵 ) mod 8 ) ∈ { 1 , 7 } ↔ ( 𝐵 mod 8 ) ∈ { 1 , 7 } ) ) |
| 32 |
31
|
adantlr |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵 ) ) ∧ ( 𝐴 mod 8 ) ∈ { 1 , 7 } ) → ( ( ( 𝐴 · 𝐵 ) mod 8 ) ∈ { 1 , 7 } ↔ ( 𝐵 mod 8 ) ∈ { 1 , 7 } ) ) |
| 33 |
32
|
ifbid |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵 ) ) ∧ ( 𝐴 mod 8 ) ∈ { 1 , 7 } ) → if ( ( ( 𝐴 · 𝐵 ) mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) = if ( ( 𝐵 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) |
| 34 |
27 30 33
|
3eqtr4a |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵 ) ) ∧ ( 𝐴 mod 8 ) ∈ { 1 , 7 } ) → ( if ( ( 𝐴 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) · if ( ( 𝐵 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) = if ( ( ( 𝐴 · 𝐵 ) mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) |
| 35 |
16
|
mulridi |
⊢ ( if ( ( 𝐴 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) · 1 ) = if ( ( 𝐴 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) |
| 36 |
|
iftrue |
⊢ ( ( 𝐵 mod 8 ) ∈ { 1 , 7 } → if ( ( 𝐵 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) = 1 ) |
| 37 |
36
|
adantl |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵 ) ) ∧ ( 𝐵 mod 8 ) ∈ { 1 , 7 } ) → if ( ( 𝐵 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) = 1 ) |
| 38 |
37
|
oveq2d |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵 ) ) ∧ ( 𝐵 mod 8 ) ∈ { 1 , 7 } ) → ( if ( ( 𝐴 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) · if ( ( 𝐵 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) = ( if ( ( 𝐴 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) · 1 ) ) |
| 39 |
|
zcn |
⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℂ ) |
| 40 |
|
zcn |
⊢ ( 𝐵 ∈ ℤ → 𝐵 ∈ ℂ ) |
| 41 |
|
mulcom |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 · 𝐵 ) = ( 𝐵 · 𝐴 ) ) |
| 42 |
39 40 41
|
syl2an |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 · 𝐵 ) = ( 𝐵 · 𝐴 ) ) |
| 43 |
42
|
ad2antrr |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵 ) ) ∧ ( 𝐵 mod 8 ) ∈ { 1 , 7 } ) → ( 𝐴 · 𝐵 ) = ( 𝐵 · 𝐴 ) ) |
| 44 |
43
|
oveq1d |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵 ) ) ∧ ( 𝐵 mod 8 ) ∈ { 1 , 7 } ) → ( ( 𝐴 · 𝐵 ) mod 8 ) = ( ( 𝐵 · 𝐴 ) mod 8 ) ) |
| 45 |
44
|
eleq1d |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵 ) ) ∧ ( 𝐵 mod 8 ) ∈ { 1 , 7 } ) → ( ( ( 𝐴 · 𝐵 ) mod 8 ) ∈ { 1 , 7 } ↔ ( ( 𝐵 · 𝐴 ) mod 8 ) ∈ { 1 , 7 } ) ) |
| 46 |
|
lgsdir2lem4 |
⊢ ( ( ( 𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ ) ∧ ( 𝐵 mod 8 ) ∈ { 1 , 7 } ) → ( ( ( 𝐵 · 𝐴 ) mod 8 ) ∈ { 1 , 7 } ↔ ( 𝐴 mod 8 ) ∈ { 1 , 7 } ) ) |
| 47 |
46
|
ancom1s |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐵 mod 8 ) ∈ { 1 , 7 } ) → ( ( ( 𝐵 · 𝐴 ) mod 8 ) ∈ { 1 , 7 } ↔ ( 𝐴 mod 8 ) ∈ { 1 , 7 } ) ) |
| 48 |
47
|
adantlr |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵 ) ) ∧ ( 𝐵 mod 8 ) ∈ { 1 , 7 } ) → ( ( ( 𝐵 · 𝐴 ) mod 8 ) ∈ { 1 , 7 } ↔ ( 𝐴 mod 8 ) ∈ { 1 , 7 } ) ) |
| 49 |
45 48
|
bitrd |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵 ) ) ∧ ( 𝐵 mod 8 ) ∈ { 1 , 7 } ) → ( ( ( 𝐴 · 𝐵 ) mod 8 ) ∈ { 1 , 7 } ↔ ( 𝐴 mod 8 ) ∈ { 1 , 7 } ) ) |
| 50 |
49
|
ifbid |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵 ) ) ∧ ( 𝐵 mod 8 ) ∈ { 1 , 7 } ) → if ( ( ( 𝐴 · 𝐵 ) mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) = if ( ( 𝐴 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) |
| 51 |
35 38 50
|
3eqtr4a |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵 ) ) ∧ ( 𝐵 mod 8 ) ∈ { 1 , 7 } ) → ( if ( ( 𝐴 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) · if ( ( 𝐵 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) = if ( ( ( 𝐴 · 𝐵 ) mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) |
| 52 |
|
neg1mulneg1e1 |
⊢ ( - 1 · - 1 ) = 1 |
| 53 |
|
iffalse |
⊢ ( ¬ ( 𝐴 mod 8 ) ∈ { 1 , 7 } → if ( ( 𝐴 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) = - 1 ) |
| 54 |
|
iffalse |
⊢ ( ¬ ( 𝐵 mod 8 ) ∈ { 1 , 7 } → if ( ( 𝐵 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) = - 1 ) |
| 55 |
53 54
|
oveqan12d |
⊢ ( ( ¬ ( 𝐴 mod 8 ) ∈ { 1 , 7 } ∧ ¬ ( 𝐵 mod 8 ) ∈ { 1 , 7 } ) → ( if ( ( 𝐴 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) · if ( ( 𝐵 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) = ( - 1 · - 1 ) ) |
| 56 |
55
|
adantl |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵 ) ) ∧ ( ¬ ( 𝐴 mod 8 ) ∈ { 1 , 7 } ∧ ¬ ( 𝐵 mod 8 ) ∈ { 1 , 7 } ) ) → ( if ( ( 𝐴 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) · if ( ( 𝐵 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) = ( - 1 · - 1 ) ) |
| 57 |
|
lgsdir2lem3 |
⊢ ( ( 𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴 ) → ( 𝐴 mod 8 ) ∈ ( { 1 , 7 } ∪ { 3 , 5 } ) ) |
| 58 |
57
|
ad2ant2r |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵 ) ) → ( 𝐴 mod 8 ) ∈ ( { 1 , 7 } ∪ { 3 , 5 } ) ) |
| 59 |
|
elun |
⊢ ( ( 𝐴 mod 8 ) ∈ ( { 1 , 7 } ∪ { 3 , 5 } ) ↔ ( ( 𝐴 mod 8 ) ∈ { 1 , 7 } ∨ ( 𝐴 mod 8 ) ∈ { 3 , 5 } ) ) |
| 60 |
58 59
|
sylib |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵 ) ) → ( ( 𝐴 mod 8 ) ∈ { 1 , 7 } ∨ ( 𝐴 mod 8 ) ∈ { 3 , 5 } ) ) |
| 61 |
60
|
orcanai |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵 ) ) ∧ ¬ ( 𝐴 mod 8 ) ∈ { 1 , 7 } ) → ( 𝐴 mod 8 ) ∈ { 3 , 5 } ) |
| 62 |
|
lgsdir2lem3 |
⊢ ( ( 𝐵 ∈ ℤ ∧ ¬ 2 ∥ 𝐵 ) → ( 𝐵 mod 8 ) ∈ ( { 1 , 7 } ∪ { 3 , 5 } ) ) |
| 63 |
62
|
ad2ant2l |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵 ) ) → ( 𝐵 mod 8 ) ∈ ( { 1 , 7 } ∪ { 3 , 5 } ) ) |
| 64 |
|
elun |
⊢ ( ( 𝐵 mod 8 ) ∈ ( { 1 , 7 } ∪ { 3 , 5 } ) ↔ ( ( 𝐵 mod 8 ) ∈ { 1 , 7 } ∨ ( 𝐵 mod 8 ) ∈ { 3 , 5 } ) ) |
| 65 |
63 64
|
sylib |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵 ) ) → ( ( 𝐵 mod 8 ) ∈ { 1 , 7 } ∨ ( 𝐵 mod 8 ) ∈ { 3 , 5 } ) ) |
| 66 |
65
|
orcanai |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵 ) ) ∧ ¬ ( 𝐵 mod 8 ) ∈ { 1 , 7 } ) → ( 𝐵 mod 8 ) ∈ { 3 , 5 } ) |
| 67 |
61 66
|
anim12dan |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵 ) ) ∧ ( ¬ ( 𝐴 mod 8 ) ∈ { 1 , 7 } ∧ ¬ ( 𝐵 mod 8 ) ∈ { 1 , 7 } ) ) → ( ( 𝐴 mod 8 ) ∈ { 3 , 5 } ∧ ( 𝐵 mod 8 ) ∈ { 3 , 5 } ) ) |
| 68 |
|
lgsdir2lem5 |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( 𝐴 mod 8 ) ∈ { 3 , 5 } ∧ ( 𝐵 mod 8 ) ∈ { 3 , 5 } ) ) → ( ( 𝐴 · 𝐵 ) mod 8 ) ∈ { 1 , 7 } ) |
| 69 |
68
|
adantlr |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵 ) ) ∧ ( ( 𝐴 mod 8 ) ∈ { 3 , 5 } ∧ ( 𝐵 mod 8 ) ∈ { 3 , 5 } ) ) → ( ( 𝐴 · 𝐵 ) mod 8 ) ∈ { 1 , 7 } ) |
| 70 |
67 69
|
syldan |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵 ) ) ∧ ( ¬ ( 𝐴 mod 8 ) ∈ { 1 , 7 } ∧ ¬ ( 𝐵 mod 8 ) ∈ { 1 , 7 } ) ) → ( ( 𝐴 · 𝐵 ) mod 8 ) ∈ { 1 , 7 } ) |
| 71 |
70
|
iftrued |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵 ) ) ∧ ( ¬ ( 𝐴 mod 8 ) ∈ { 1 , 7 } ∧ ¬ ( 𝐵 mod 8 ) ∈ { 1 , 7 } ) ) → if ( ( ( 𝐴 · 𝐵 ) mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) = 1 ) |
| 72 |
52 56 71
|
3eqtr4a |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵 ) ) ∧ ( ¬ ( 𝐴 mod 8 ) ∈ { 1 , 7 } ∧ ¬ ( 𝐵 mod 8 ) ∈ { 1 , 7 } ) ) → ( if ( ( 𝐴 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) · if ( ( 𝐵 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) = if ( ( ( 𝐴 · 𝐵 ) mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) |
| 73 |
34 51 72
|
pm2.61ddan |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵 ) ) → ( if ( ( 𝐴 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) · if ( ( 𝐵 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) = if ( ( ( 𝐴 · 𝐵 ) mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) |
| 74 |
|
iffalse |
⊢ ( ¬ 2 ∥ 𝐴 → if ( 2 ∥ 𝐴 , 0 , if ( ( 𝐴 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) = if ( ( 𝐴 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) |
| 75 |
|
iffalse |
⊢ ( ¬ 2 ∥ 𝐵 → if ( 2 ∥ 𝐵 , 0 , if ( ( 𝐵 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) = if ( ( 𝐵 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) |
| 76 |
74 75
|
oveqan12d |
⊢ ( ( ¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵 ) → ( if ( 2 ∥ 𝐴 , 0 , if ( ( 𝐴 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) · if ( 2 ∥ 𝐵 , 0 , if ( ( 𝐵 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) ) = ( if ( ( 𝐴 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) · if ( ( 𝐵 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) ) |
| 77 |
76
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵 ) ) → ( if ( 2 ∥ 𝐴 , 0 , if ( ( 𝐴 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) · if ( 2 ∥ 𝐵 , 0 , if ( ( 𝐵 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) ) = ( if ( ( 𝐴 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) · if ( ( 𝐵 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) ) |
| 78 |
|
ioran |
⊢ ( ¬ ( 2 ∥ 𝐴 ∨ 2 ∥ 𝐵 ) ↔ ( ¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵 ) ) |
| 79 |
|
2prm |
⊢ 2 ∈ ℙ |
| 80 |
|
euclemma |
⊢ ( ( 2 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 2 ∥ ( 𝐴 · 𝐵 ) ↔ ( 2 ∥ 𝐴 ∨ 2 ∥ 𝐵 ) ) ) |
| 81 |
79 80
|
mp3an1 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 2 ∥ ( 𝐴 · 𝐵 ) ↔ ( 2 ∥ 𝐴 ∨ 2 ∥ 𝐵 ) ) ) |
| 82 |
81
|
notbid |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ¬ 2 ∥ ( 𝐴 · 𝐵 ) ↔ ¬ ( 2 ∥ 𝐴 ∨ 2 ∥ 𝐵 ) ) ) |
| 83 |
82
|
biimpar |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ¬ ( 2 ∥ 𝐴 ∨ 2 ∥ 𝐵 ) ) → ¬ 2 ∥ ( 𝐴 · 𝐵 ) ) |
| 84 |
78 83
|
sylan2br |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵 ) ) → ¬ 2 ∥ ( 𝐴 · 𝐵 ) ) |
| 85 |
|
iffalse |
⊢ ( ¬ 2 ∥ ( 𝐴 · 𝐵 ) → if ( 2 ∥ ( 𝐴 · 𝐵 ) , 0 , if ( ( ( 𝐴 · 𝐵 ) mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) = if ( ( ( 𝐴 · 𝐵 ) mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) |
| 86 |
84 85
|
syl |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵 ) ) → if ( 2 ∥ ( 𝐴 · 𝐵 ) , 0 , if ( ( ( 𝐴 · 𝐵 ) mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) = if ( ( ( 𝐴 · 𝐵 ) mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) |
| 87 |
73 77 86
|
3eqtr4d |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵 ) ) → ( if ( 2 ∥ 𝐴 , 0 , if ( ( 𝐴 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) · if ( 2 ∥ 𝐵 , 0 , if ( ( 𝐵 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) ) = if ( 2 ∥ ( 𝐴 · 𝐵 ) , 0 , if ( ( ( 𝐴 · 𝐵 ) mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) ) |
| 88 |
15 26 87
|
pm2.61ddan |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( if ( 2 ∥ 𝐴 , 0 , if ( ( 𝐴 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) · if ( 2 ∥ 𝐵 , 0 , if ( ( 𝐵 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) ) = if ( 2 ∥ ( 𝐴 · 𝐵 ) , 0 , if ( ( ( 𝐴 · 𝐵 ) mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) ) |
| 89 |
|
lgs2 |
⊢ ( 𝐴 ∈ ℤ → ( 𝐴 /L 2 ) = if ( 2 ∥ 𝐴 , 0 , if ( ( 𝐴 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) ) |
| 90 |
|
lgs2 |
⊢ ( 𝐵 ∈ ℤ → ( 𝐵 /L 2 ) = if ( 2 ∥ 𝐵 , 0 , if ( ( 𝐵 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) ) |
| 91 |
89 90
|
oveqan12d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐴 /L 2 ) · ( 𝐵 /L 2 ) ) = ( if ( 2 ∥ 𝐴 , 0 , if ( ( 𝐴 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) · if ( 2 ∥ 𝐵 , 0 , if ( ( 𝐵 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) ) ) |
| 92 |
|
zmulcl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 · 𝐵 ) ∈ ℤ ) |
| 93 |
|
lgs2 |
⊢ ( ( 𝐴 · 𝐵 ) ∈ ℤ → ( ( 𝐴 · 𝐵 ) /L 2 ) = if ( 2 ∥ ( 𝐴 · 𝐵 ) , 0 , if ( ( ( 𝐴 · 𝐵 ) mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) ) |
| 94 |
92 93
|
syl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐴 · 𝐵 ) /L 2 ) = if ( 2 ∥ ( 𝐴 · 𝐵 ) , 0 , if ( ( ( 𝐴 · 𝐵 ) mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) ) |
| 95 |
88 91 94
|
3eqtr4rd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐴 · 𝐵 ) /L 2 ) = ( ( 𝐴 /L 2 ) · ( 𝐵 /L 2 ) ) ) |