Step |
Hyp |
Ref |
Expression |
1 |
|
0cn |
⊢ 0 ∈ ℂ |
2 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
3 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
4 |
2 3
|
ifcli |
⊢ if ( ( 𝐵 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ∈ ℂ |
5 |
1 4
|
ifcli |
⊢ if ( 2 ∥ 𝐵 , 0 , if ( ( 𝐵 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) ∈ ℂ |
6 |
5
|
mul02i |
⊢ ( 0 · if ( 2 ∥ 𝐵 , 0 , if ( ( 𝐵 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) ) = 0 |
7 |
|
iftrue |
⊢ ( 2 ∥ 𝐴 → if ( 2 ∥ 𝐴 , 0 , if ( ( 𝐴 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) = 0 ) |
8 |
7
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 2 ∥ 𝐴 ) → if ( 2 ∥ 𝐴 , 0 , if ( ( 𝐴 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) = 0 ) |
9 |
8
|
oveq1d |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 2 ∥ 𝐴 ) → ( if ( 2 ∥ 𝐴 , 0 , if ( ( 𝐴 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) · if ( 2 ∥ 𝐵 , 0 , if ( ( 𝐵 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) ) = ( 0 · if ( 2 ∥ 𝐵 , 0 , if ( ( 𝐵 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) ) ) |
10 |
|
2z |
⊢ 2 ∈ ℤ |
11 |
|
dvdsmultr1 |
⊢ ( ( 2 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 2 ∥ 𝐴 → 2 ∥ ( 𝐴 · 𝐵 ) ) ) |
12 |
10 11
|
mp3an1 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 2 ∥ 𝐴 → 2 ∥ ( 𝐴 · 𝐵 ) ) ) |
13 |
12
|
imp |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 2 ∥ 𝐴 ) → 2 ∥ ( 𝐴 · 𝐵 ) ) |
14 |
13
|
iftrued |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 2 ∥ 𝐴 ) → if ( 2 ∥ ( 𝐴 · 𝐵 ) , 0 , if ( ( ( 𝐴 · 𝐵 ) mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) = 0 ) |
15 |
6 9 14
|
3eqtr4a |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 2 ∥ 𝐴 ) → ( if ( 2 ∥ 𝐴 , 0 , if ( ( 𝐴 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) · if ( 2 ∥ 𝐵 , 0 , if ( ( 𝐵 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) ) = if ( 2 ∥ ( 𝐴 · 𝐵 ) , 0 , if ( ( ( 𝐴 · 𝐵 ) mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) ) |
16 |
2 3
|
ifcli |
⊢ if ( ( 𝐴 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ∈ ℂ |
17 |
1 16
|
ifcli |
⊢ if ( 2 ∥ 𝐴 , 0 , if ( ( 𝐴 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) ∈ ℂ |
18 |
17
|
mul01i |
⊢ ( if ( 2 ∥ 𝐴 , 0 , if ( ( 𝐴 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) · 0 ) = 0 |
19 |
|
iftrue |
⊢ ( 2 ∥ 𝐵 → if ( 2 ∥ 𝐵 , 0 , if ( ( 𝐵 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) = 0 ) |
20 |
19
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 2 ∥ 𝐵 ) → if ( 2 ∥ 𝐵 , 0 , if ( ( 𝐵 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) = 0 ) |
21 |
20
|
oveq2d |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 2 ∥ 𝐵 ) → ( if ( 2 ∥ 𝐴 , 0 , if ( ( 𝐴 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) · if ( 2 ∥ 𝐵 , 0 , if ( ( 𝐵 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) ) = ( if ( 2 ∥ 𝐴 , 0 , if ( ( 𝐴 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) · 0 ) ) |
22 |
|
dvdsmultr2 |
⊢ ( ( 2 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 2 ∥ 𝐵 → 2 ∥ ( 𝐴 · 𝐵 ) ) ) |
23 |
10 22
|
mp3an1 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 2 ∥ 𝐵 → 2 ∥ ( 𝐴 · 𝐵 ) ) ) |
24 |
23
|
imp |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 2 ∥ 𝐵 ) → 2 ∥ ( 𝐴 · 𝐵 ) ) |
25 |
24
|
iftrued |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 2 ∥ 𝐵 ) → if ( 2 ∥ ( 𝐴 · 𝐵 ) , 0 , if ( ( ( 𝐴 · 𝐵 ) mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) = 0 ) |
26 |
18 21 25
|
3eqtr4a |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 2 ∥ 𝐵 ) → ( if ( 2 ∥ 𝐴 , 0 , if ( ( 𝐴 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) · if ( 2 ∥ 𝐵 , 0 , if ( ( 𝐵 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) ) = if ( 2 ∥ ( 𝐴 · 𝐵 ) , 0 , if ( ( ( 𝐴 · 𝐵 ) mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) ) |
27 |
4
|
mulid2i |
⊢ ( 1 · if ( ( 𝐵 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) = if ( ( 𝐵 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) |
28 |
|
iftrue |
⊢ ( ( 𝐴 mod 8 ) ∈ { 1 , 7 } → if ( ( 𝐴 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) = 1 ) |
29 |
28
|
adantl |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵 ) ) ∧ ( 𝐴 mod 8 ) ∈ { 1 , 7 } ) → if ( ( 𝐴 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) = 1 ) |
30 |
29
|
oveq1d |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵 ) ) ∧ ( 𝐴 mod 8 ) ∈ { 1 , 7 } ) → ( if ( ( 𝐴 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) · if ( ( 𝐵 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) = ( 1 · if ( ( 𝐵 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) ) |
31 |
|
lgsdir2lem4 |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐴 mod 8 ) ∈ { 1 , 7 } ) → ( ( ( 𝐴 · 𝐵 ) mod 8 ) ∈ { 1 , 7 } ↔ ( 𝐵 mod 8 ) ∈ { 1 , 7 } ) ) |
32 |
31
|
adantlr |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵 ) ) ∧ ( 𝐴 mod 8 ) ∈ { 1 , 7 } ) → ( ( ( 𝐴 · 𝐵 ) mod 8 ) ∈ { 1 , 7 } ↔ ( 𝐵 mod 8 ) ∈ { 1 , 7 } ) ) |
33 |
32
|
ifbid |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵 ) ) ∧ ( 𝐴 mod 8 ) ∈ { 1 , 7 } ) → if ( ( ( 𝐴 · 𝐵 ) mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) = if ( ( 𝐵 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) |
34 |
27 30 33
|
3eqtr4a |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵 ) ) ∧ ( 𝐴 mod 8 ) ∈ { 1 , 7 } ) → ( if ( ( 𝐴 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) · if ( ( 𝐵 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) = if ( ( ( 𝐴 · 𝐵 ) mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) |
35 |
16
|
mulid1i |
⊢ ( if ( ( 𝐴 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) · 1 ) = if ( ( 𝐴 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) |
36 |
|
iftrue |
⊢ ( ( 𝐵 mod 8 ) ∈ { 1 , 7 } → if ( ( 𝐵 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) = 1 ) |
37 |
36
|
adantl |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵 ) ) ∧ ( 𝐵 mod 8 ) ∈ { 1 , 7 } ) → if ( ( 𝐵 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) = 1 ) |
38 |
37
|
oveq2d |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵 ) ) ∧ ( 𝐵 mod 8 ) ∈ { 1 , 7 } ) → ( if ( ( 𝐴 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) · if ( ( 𝐵 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) = ( if ( ( 𝐴 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) · 1 ) ) |
39 |
|
zcn |
⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℂ ) |
40 |
|
zcn |
⊢ ( 𝐵 ∈ ℤ → 𝐵 ∈ ℂ ) |
41 |
|
mulcom |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 · 𝐵 ) = ( 𝐵 · 𝐴 ) ) |
42 |
39 40 41
|
syl2an |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 · 𝐵 ) = ( 𝐵 · 𝐴 ) ) |
43 |
42
|
ad2antrr |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵 ) ) ∧ ( 𝐵 mod 8 ) ∈ { 1 , 7 } ) → ( 𝐴 · 𝐵 ) = ( 𝐵 · 𝐴 ) ) |
44 |
43
|
oveq1d |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵 ) ) ∧ ( 𝐵 mod 8 ) ∈ { 1 , 7 } ) → ( ( 𝐴 · 𝐵 ) mod 8 ) = ( ( 𝐵 · 𝐴 ) mod 8 ) ) |
45 |
44
|
eleq1d |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵 ) ) ∧ ( 𝐵 mod 8 ) ∈ { 1 , 7 } ) → ( ( ( 𝐴 · 𝐵 ) mod 8 ) ∈ { 1 , 7 } ↔ ( ( 𝐵 · 𝐴 ) mod 8 ) ∈ { 1 , 7 } ) ) |
46 |
|
lgsdir2lem4 |
⊢ ( ( ( 𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ ) ∧ ( 𝐵 mod 8 ) ∈ { 1 , 7 } ) → ( ( ( 𝐵 · 𝐴 ) mod 8 ) ∈ { 1 , 7 } ↔ ( 𝐴 mod 8 ) ∈ { 1 , 7 } ) ) |
47 |
46
|
ancom1s |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐵 mod 8 ) ∈ { 1 , 7 } ) → ( ( ( 𝐵 · 𝐴 ) mod 8 ) ∈ { 1 , 7 } ↔ ( 𝐴 mod 8 ) ∈ { 1 , 7 } ) ) |
48 |
47
|
adantlr |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵 ) ) ∧ ( 𝐵 mod 8 ) ∈ { 1 , 7 } ) → ( ( ( 𝐵 · 𝐴 ) mod 8 ) ∈ { 1 , 7 } ↔ ( 𝐴 mod 8 ) ∈ { 1 , 7 } ) ) |
49 |
45 48
|
bitrd |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵 ) ) ∧ ( 𝐵 mod 8 ) ∈ { 1 , 7 } ) → ( ( ( 𝐴 · 𝐵 ) mod 8 ) ∈ { 1 , 7 } ↔ ( 𝐴 mod 8 ) ∈ { 1 , 7 } ) ) |
50 |
49
|
ifbid |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵 ) ) ∧ ( 𝐵 mod 8 ) ∈ { 1 , 7 } ) → if ( ( ( 𝐴 · 𝐵 ) mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) = if ( ( 𝐴 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) |
51 |
35 38 50
|
3eqtr4a |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵 ) ) ∧ ( 𝐵 mod 8 ) ∈ { 1 , 7 } ) → ( if ( ( 𝐴 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) · if ( ( 𝐵 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) = if ( ( ( 𝐴 · 𝐵 ) mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) |
52 |
|
neg1mulneg1e1 |
⊢ ( - 1 · - 1 ) = 1 |
53 |
|
iffalse |
⊢ ( ¬ ( 𝐴 mod 8 ) ∈ { 1 , 7 } → if ( ( 𝐴 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) = - 1 ) |
54 |
|
iffalse |
⊢ ( ¬ ( 𝐵 mod 8 ) ∈ { 1 , 7 } → if ( ( 𝐵 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) = - 1 ) |
55 |
53 54
|
oveqan12d |
⊢ ( ( ¬ ( 𝐴 mod 8 ) ∈ { 1 , 7 } ∧ ¬ ( 𝐵 mod 8 ) ∈ { 1 , 7 } ) → ( if ( ( 𝐴 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) · if ( ( 𝐵 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) = ( - 1 · - 1 ) ) |
56 |
55
|
adantl |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵 ) ) ∧ ( ¬ ( 𝐴 mod 8 ) ∈ { 1 , 7 } ∧ ¬ ( 𝐵 mod 8 ) ∈ { 1 , 7 } ) ) → ( if ( ( 𝐴 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) · if ( ( 𝐵 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) = ( - 1 · - 1 ) ) |
57 |
|
lgsdir2lem3 |
⊢ ( ( 𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴 ) → ( 𝐴 mod 8 ) ∈ ( { 1 , 7 } ∪ { 3 , 5 } ) ) |
58 |
57
|
ad2ant2r |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵 ) ) → ( 𝐴 mod 8 ) ∈ ( { 1 , 7 } ∪ { 3 , 5 } ) ) |
59 |
|
elun |
⊢ ( ( 𝐴 mod 8 ) ∈ ( { 1 , 7 } ∪ { 3 , 5 } ) ↔ ( ( 𝐴 mod 8 ) ∈ { 1 , 7 } ∨ ( 𝐴 mod 8 ) ∈ { 3 , 5 } ) ) |
60 |
58 59
|
sylib |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵 ) ) → ( ( 𝐴 mod 8 ) ∈ { 1 , 7 } ∨ ( 𝐴 mod 8 ) ∈ { 3 , 5 } ) ) |
61 |
60
|
orcanai |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵 ) ) ∧ ¬ ( 𝐴 mod 8 ) ∈ { 1 , 7 } ) → ( 𝐴 mod 8 ) ∈ { 3 , 5 } ) |
62 |
|
lgsdir2lem3 |
⊢ ( ( 𝐵 ∈ ℤ ∧ ¬ 2 ∥ 𝐵 ) → ( 𝐵 mod 8 ) ∈ ( { 1 , 7 } ∪ { 3 , 5 } ) ) |
63 |
62
|
ad2ant2l |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵 ) ) → ( 𝐵 mod 8 ) ∈ ( { 1 , 7 } ∪ { 3 , 5 } ) ) |
64 |
|
elun |
⊢ ( ( 𝐵 mod 8 ) ∈ ( { 1 , 7 } ∪ { 3 , 5 } ) ↔ ( ( 𝐵 mod 8 ) ∈ { 1 , 7 } ∨ ( 𝐵 mod 8 ) ∈ { 3 , 5 } ) ) |
65 |
63 64
|
sylib |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵 ) ) → ( ( 𝐵 mod 8 ) ∈ { 1 , 7 } ∨ ( 𝐵 mod 8 ) ∈ { 3 , 5 } ) ) |
66 |
65
|
orcanai |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵 ) ) ∧ ¬ ( 𝐵 mod 8 ) ∈ { 1 , 7 } ) → ( 𝐵 mod 8 ) ∈ { 3 , 5 } ) |
67 |
61 66
|
anim12dan |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵 ) ) ∧ ( ¬ ( 𝐴 mod 8 ) ∈ { 1 , 7 } ∧ ¬ ( 𝐵 mod 8 ) ∈ { 1 , 7 } ) ) → ( ( 𝐴 mod 8 ) ∈ { 3 , 5 } ∧ ( 𝐵 mod 8 ) ∈ { 3 , 5 } ) ) |
68 |
|
lgsdir2lem5 |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( 𝐴 mod 8 ) ∈ { 3 , 5 } ∧ ( 𝐵 mod 8 ) ∈ { 3 , 5 } ) ) → ( ( 𝐴 · 𝐵 ) mod 8 ) ∈ { 1 , 7 } ) |
69 |
68
|
adantlr |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵 ) ) ∧ ( ( 𝐴 mod 8 ) ∈ { 3 , 5 } ∧ ( 𝐵 mod 8 ) ∈ { 3 , 5 } ) ) → ( ( 𝐴 · 𝐵 ) mod 8 ) ∈ { 1 , 7 } ) |
70 |
67 69
|
syldan |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵 ) ) ∧ ( ¬ ( 𝐴 mod 8 ) ∈ { 1 , 7 } ∧ ¬ ( 𝐵 mod 8 ) ∈ { 1 , 7 } ) ) → ( ( 𝐴 · 𝐵 ) mod 8 ) ∈ { 1 , 7 } ) |
71 |
70
|
iftrued |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵 ) ) ∧ ( ¬ ( 𝐴 mod 8 ) ∈ { 1 , 7 } ∧ ¬ ( 𝐵 mod 8 ) ∈ { 1 , 7 } ) ) → if ( ( ( 𝐴 · 𝐵 ) mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) = 1 ) |
72 |
52 56 71
|
3eqtr4a |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵 ) ) ∧ ( ¬ ( 𝐴 mod 8 ) ∈ { 1 , 7 } ∧ ¬ ( 𝐵 mod 8 ) ∈ { 1 , 7 } ) ) → ( if ( ( 𝐴 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) · if ( ( 𝐵 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) = if ( ( ( 𝐴 · 𝐵 ) mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) |
73 |
34 51 72
|
pm2.61ddan |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵 ) ) → ( if ( ( 𝐴 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) · if ( ( 𝐵 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) = if ( ( ( 𝐴 · 𝐵 ) mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) |
74 |
|
iffalse |
⊢ ( ¬ 2 ∥ 𝐴 → if ( 2 ∥ 𝐴 , 0 , if ( ( 𝐴 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) = if ( ( 𝐴 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) |
75 |
|
iffalse |
⊢ ( ¬ 2 ∥ 𝐵 → if ( 2 ∥ 𝐵 , 0 , if ( ( 𝐵 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) = if ( ( 𝐵 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) |
76 |
74 75
|
oveqan12d |
⊢ ( ( ¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵 ) → ( if ( 2 ∥ 𝐴 , 0 , if ( ( 𝐴 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) · if ( 2 ∥ 𝐵 , 0 , if ( ( 𝐵 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) ) = ( if ( ( 𝐴 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) · if ( ( 𝐵 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) ) |
77 |
76
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵 ) ) → ( if ( 2 ∥ 𝐴 , 0 , if ( ( 𝐴 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) · if ( 2 ∥ 𝐵 , 0 , if ( ( 𝐵 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) ) = ( if ( ( 𝐴 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) · if ( ( 𝐵 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) ) |
78 |
|
ioran |
⊢ ( ¬ ( 2 ∥ 𝐴 ∨ 2 ∥ 𝐵 ) ↔ ( ¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵 ) ) |
79 |
|
2prm |
⊢ 2 ∈ ℙ |
80 |
|
euclemma |
⊢ ( ( 2 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 2 ∥ ( 𝐴 · 𝐵 ) ↔ ( 2 ∥ 𝐴 ∨ 2 ∥ 𝐵 ) ) ) |
81 |
79 80
|
mp3an1 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 2 ∥ ( 𝐴 · 𝐵 ) ↔ ( 2 ∥ 𝐴 ∨ 2 ∥ 𝐵 ) ) ) |
82 |
81
|
notbid |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ¬ 2 ∥ ( 𝐴 · 𝐵 ) ↔ ¬ ( 2 ∥ 𝐴 ∨ 2 ∥ 𝐵 ) ) ) |
83 |
82
|
biimpar |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ¬ ( 2 ∥ 𝐴 ∨ 2 ∥ 𝐵 ) ) → ¬ 2 ∥ ( 𝐴 · 𝐵 ) ) |
84 |
78 83
|
sylan2br |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵 ) ) → ¬ 2 ∥ ( 𝐴 · 𝐵 ) ) |
85 |
|
iffalse |
⊢ ( ¬ 2 ∥ ( 𝐴 · 𝐵 ) → if ( 2 ∥ ( 𝐴 · 𝐵 ) , 0 , if ( ( ( 𝐴 · 𝐵 ) mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) = if ( ( ( 𝐴 · 𝐵 ) mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) |
86 |
84 85
|
syl |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵 ) ) → if ( 2 ∥ ( 𝐴 · 𝐵 ) , 0 , if ( ( ( 𝐴 · 𝐵 ) mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) = if ( ( ( 𝐴 · 𝐵 ) mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) |
87 |
73 77 86
|
3eqtr4d |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵 ) ) → ( if ( 2 ∥ 𝐴 , 0 , if ( ( 𝐴 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) · if ( 2 ∥ 𝐵 , 0 , if ( ( 𝐵 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) ) = if ( 2 ∥ ( 𝐴 · 𝐵 ) , 0 , if ( ( ( 𝐴 · 𝐵 ) mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) ) |
88 |
15 26 87
|
pm2.61ddan |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( if ( 2 ∥ 𝐴 , 0 , if ( ( 𝐴 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) · if ( 2 ∥ 𝐵 , 0 , if ( ( 𝐵 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) ) = if ( 2 ∥ ( 𝐴 · 𝐵 ) , 0 , if ( ( ( 𝐴 · 𝐵 ) mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) ) |
89 |
|
lgs2 |
⊢ ( 𝐴 ∈ ℤ → ( 𝐴 /L 2 ) = if ( 2 ∥ 𝐴 , 0 , if ( ( 𝐴 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) ) |
90 |
|
lgs2 |
⊢ ( 𝐵 ∈ ℤ → ( 𝐵 /L 2 ) = if ( 2 ∥ 𝐵 , 0 , if ( ( 𝐵 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) ) |
91 |
89 90
|
oveqan12d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐴 /L 2 ) · ( 𝐵 /L 2 ) ) = ( if ( 2 ∥ 𝐴 , 0 , if ( ( 𝐴 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) · if ( 2 ∥ 𝐵 , 0 , if ( ( 𝐵 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) ) ) |
92 |
|
zmulcl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 · 𝐵 ) ∈ ℤ ) |
93 |
|
lgs2 |
⊢ ( ( 𝐴 · 𝐵 ) ∈ ℤ → ( ( 𝐴 · 𝐵 ) /L 2 ) = if ( 2 ∥ ( 𝐴 · 𝐵 ) , 0 , if ( ( ( 𝐴 · 𝐵 ) mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) ) |
94 |
92 93
|
syl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐴 · 𝐵 ) /L 2 ) = if ( 2 ∥ ( 𝐴 · 𝐵 ) , 0 , if ( ( ( 𝐴 · 𝐵 ) mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) ) |
95 |
88 91 94
|
3eqtr4rd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐴 · 𝐵 ) /L 2 ) = ( ( 𝐴 /L 2 ) · ( 𝐵 /L 2 ) ) ) |