Description: Lemma for lgsdir2 . (Contributed by Mario Carneiro, 4-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | lgsdir2lem1 | ⊢ ( ( ( 1 mod 8 ) = 1 ∧ ( - 1 mod 8 ) = 7 ) ∧ ( ( 3 mod 8 ) = 3 ∧ ( - 3 mod 8 ) = 5 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1re | ⊢ 1 ∈ ℝ | |
2 | 8re | ⊢ 8 ∈ ℝ | |
3 | 8pos | ⊢ 0 < 8 | |
4 | 2 3 | elrpii | ⊢ 8 ∈ ℝ+ |
5 | 0le1 | ⊢ 0 ≤ 1 | |
6 | 1lt8 | ⊢ 1 < 8 | |
7 | modid | ⊢ ( ( ( 1 ∈ ℝ ∧ 8 ∈ ℝ+ ) ∧ ( 0 ≤ 1 ∧ 1 < 8 ) ) → ( 1 mod 8 ) = 1 ) | |
8 | 1 4 5 6 7 | mp4an | ⊢ ( 1 mod 8 ) = 1 |
9 | 8cn | ⊢ 8 ∈ ℂ | |
10 | 9 | mulid2i | ⊢ ( 1 · 8 ) = 8 |
11 | 10 | oveq2i | ⊢ ( - 1 + ( 1 · 8 ) ) = ( - 1 + 8 ) |
12 | ax-1cn | ⊢ 1 ∈ ℂ | |
13 | 12 | negcli | ⊢ - 1 ∈ ℂ |
14 | 9 12 | negsubi | ⊢ ( 8 + - 1 ) = ( 8 − 1 ) |
15 | 8m1e7 | ⊢ ( 8 − 1 ) = 7 | |
16 | 14 15 | eqtri | ⊢ ( 8 + - 1 ) = 7 |
17 | 9 13 16 | addcomli | ⊢ ( - 1 + 8 ) = 7 |
18 | 11 17 | eqtri | ⊢ ( - 1 + ( 1 · 8 ) ) = 7 |
19 | 18 | oveq1i | ⊢ ( ( - 1 + ( 1 · 8 ) ) mod 8 ) = ( 7 mod 8 ) |
20 | 1 | renegcli | ⊢ - 1 ∈ ℝ |
21 | 1z | ⊢ 1 ∈ ℤ | |
22 | modcyc | ⊢ ( ( - 1 ∈ ℝ ∧ 8 ∈ ℝ+ ∧ 1 ∈ ℤ ) → ( ( - 1 + ( 1 · 8 ) ) mod 8 ) = ( - 1 mod 8 ) ) | |
23 | 20 4 21 22 | mp3an | ⊢ ( ( - 1 + ( 1 · 8 ) ) mod 8 ) = ( - 1 mod 8 ) |
24 | 7re | ⊢ 7 ∈ ℝ | |
25 | 0re | ⊢ 0 ∈ ℝ | |
26 | 7pos | ⊢ 0 < 7 | |
27 | 25 24 26 | ltleii | ⊢ 0 ≤ 7 |
28 | 7lt8 | ⊢ 7 < 8 | |
29 | modid | ⊢ ( ( ( 7 ∈ ℝ ∧ 8 ∈ ℝ+ ) ∧ ( 0 ≤ 7 ∧ 7 < 8 ) ) → ( 7 mod 8 ) = 7 ) | |
30 | 24 4 27 28 29 | mp4an | ⊢ ( 7 mod 8 ) = 7 |
31 | 19 23 30 | 3eqtr3i | ⊢ ( - 1 mod 8 ) = 7 |
32 | 8 31 | pm3.2i | ⊢ ( ( 1 mod 8 ) = 1 ∧ ( - 1 mod 8 ) = 7 ) |
33 | 3re | ⊢ 3 ∈ ℝ | |
34 | 3pos | ⊢ 0 < 3 | |
35 | 25 33 34 | ltleii | ⊢ 0 ≤ 3 |
36 | 3lt8 | ⊢ 3 < 8 | |
37 | modid | ⊢ ( ( ( 3 ∈ ℝ ∧ 8 ∈ ℝ+ ) ∧ ( 0 ≤ 3 ∧ 3 < 8 ) ) → ( 3 mod 8 ) = 3 ) | |
38 | 33 4 35 36 37 | mp4an | ⊢ ( 3 mod 8 ) = 3 |
39 | 10 | oveq2i | ⊢ ( - 3 + ( 1 · 8 ) ) = ( - 3 + 8 ) |
40 | 3cn | ⊢ 3 ∈ ℂ | |
41 | 40 | negcli | ⊢ - 3 ∈ ℂ |
42 | 9 40 | negsubi | ⊢ ( 8 + - 3 ) = ( 8 − 3 ) |
43 | 5cn | ⊢ 5 ∈ ℂ | |
44 | 5p3e8 | ⊢ ( 5 + 3 ) = 8 | |
45 | 43 40 44 | addcomli | ⊢ ( 3 + 5 ) = 8 |
46 | 9 40 43 45 | subaddrii | ⊢ ( 8 − 3 ) = 5 |
47 | 42 46 | eqtri | ⊢ ( 8 + - 3 ) = 5 |
48 | 9 41 47 | addcomli | ⊢ ( - 3 + 8 ) = 5 |
49 | 39 48 | eqtri | ⊢ ( - 3 + ( 1 · 8 ) ) = 5 |
50 | 49 | oveq1i | ⊢ ( ( - 3 + ( 1 · 8 ) ) mod 8 ) = ( 5 mod 8 ) |
51 | 33 | renegcli | ⊢ - 3 ∈ ℝ |
52 | modcyc | ⊢ ( ( - 3 ∈ ℝ ∧ 8 ∈ ℝ+ ∧ 1 ∈ ℤ ) → ( ( - 3 + ( 1 · 8 ) ) mod 8 ) = ( - 3 mod 8 ) ) | |
53 | 51 4 21 52 | mp3an | ⊢ ( ( - 3 + ( 1 · 8 ) ) mod 8 ) = ( - 3 mod 8 ) |
54 | 5re | ⊢ 5 ∈ ℝ | |
55 | 5pos | ⊢ 0 < 5 | |
56 | 25 54 55 | ltleii | ⊢ 0 ≤ 5 |
57 | 5lt8 | ⊢ 5 < 8 | |
58 | modid | ⊢ ( ( ( 5 ∈ ℝ ∧ 8 ∈ ℝ+ ) ∧ ( 0 ≤ 5 ∧ 5 < 8 ) ) → ( 5 mod 8 ) = 5 ) | |
59 | 54 4 56 57 58 | mp4an | ⊢ ( 5 mod 8 ) = 5 |
60 | 50 53 59 | 3eqtr3i | ⊢ ( - 3 mod 8 ) = 5 |
61 | 38 60 | pm3.2i | ⊢ ( ( 3 mod 8 ) = 3 ∧ ( - 3 mod 8 ) = 5 ) |
62 | 32 61 | pm3.2i | ⊢ ( ( ( 1 mod 8 ) = 1 ∧ ( - 1 mod 8 ) = 7 ) ∧ ( ( 3 mod 8 ) = 3 ∧ ( - 3 mod 8 ) = 5 ) ) |