Metamath Proof Explorer


Theorem lgsdir2lem1

Description: Lemma for lgsdir2 . (Contributed by Mario Carneiro, 4-Feb-2015)

Ref Expression
Assertion lgsdir2lem1 ( ( ( 1 mod 8 ) = 1 ∧ ( - 1 mod 8 ) = 7 ) ∧ ( ( 3 mod 8 ) = 3 ∧ ( - 3 mod 8 ) = 5 ) )

Proof

Step Hyp Ref Expression
1 1re 1 ∈ ℝ
2 8re 8 ∈ ℝ
3 8pos 0 < 8
4 2 3 elrpii 8 ∈ ℝ+
5 0le1 0 ≤ 1
6 1lt8 1 < 8
7 modid ( ( ( 1 ∈ ℝ ∧ 8 ∈ ℝ+ ) ∧ ( 0 ≤ 1 ∧ 1 < 8 ) ) → ( 1 mod 8 ) = 1 )
8 1 4 5 6 7 mp4an ( 1 mod 8 ) = 1
9 8cn 8 ∈ ℂ
10 9 mulid2i ( 1 · 8 ) = 8
11 10 oveq2i ( - 1 + ( 1 · 8 ) ) = ( - 1 + 8 )
12 ax-1cn 1 ∈ ℂ
13 12 negcli - 1 ∈ ℂ
14 9 12 negsubi ( 8 + - 1 ) = ( 8 − 1 )
15 8m1e7 ( 8 − 1 ) = 7
16 14 15 eqtri ( 8 + - 1 ) = 7
17 9 13 16 addcomli ( - 1 + 8 ) = 7
18 11 17 eqtri ( - 1 + ( 1 · 8 ) ) = 7
19 18 oveq1i ( ( - 1 + ( 1 · 8 ) ) mod 8 ) = ( 7 mod 8 )
20 1 renegcli - 1 ∈ ℝ
21 1z 1 ∈ ℤ
22 modcyc ( ( - 1 ∈ ℝ ∧ 8 ∈ ℝ+ ∧ 1 ∈ ℤ ) → ( ( - 1 + ( 1 · 8 ) ) mod 8 ) = ( - 1 mod 8 ) )
23 20 4 21 22 mp3an ( ( - 1 + ( 1 · 8 ) ) mod 8 ) = ( - 1 mod 8 )
24 7re 7 ∈ ℝ
25 0re 0 ∈ ℝ
26 7pos 0 < 7
27 25 24 26 ltleii 0 ≤ 7
28 7lt8 7 < 8
29 modid ( ( ( 7 ∈ ℝ ∧ 8 ∈ ℝ+ ) ∧ ( 0 ≤ 7 ∧ 7 < 8 ) ) → ( 7 mod 8 ) = 7 )
30 24 4 27 28 29 mp4an ( 7 mod 8 ) = 7
31 19 23 30 3eqtr3i ( - 1 mod 8 ) = 7
32 8 31 pm3.2i ( ( 1 mod 8 ) = 1 ∧ ( - 1 mod 8 ) = 7 )
33 3re 3 ∈ ℝ
34 3pos 0 < 3
35 25 33 34 ltleii 0 ≤ 3
36 3lt8 3 < 8
37 modid ( ( ( 3 ∈ ℝ ∧ 8 ∈ ℝ+ ) ∧ ( 0 ≤ 3 ∧ 3 < 8 ) ) → ( 3 mod 8 ) = 3 )
38 33 4 35 36 37 mp4an ( 3 mod 8 ) = 3
39 10 oveq2i ( - 3 + ( 1 · 8 ) ) = ( - 3 + 8 )
40 3cn 3 ∈ ℂ
41 40 negcli - 3 ∈ ℂ
42 9 40 negsubi ( 8 + - 3 ) = ( 8 − 3 )
43 5cn 5 ∈ ℂ
44 5p3e8 ( 5 + 3 ) = 8
45 43 40 44 addcomli ( 3 + 5 ) = 8
46 9 40 43 45 subaddrii ( 8 − 3 ) = 5
47 42 46 eqtri ( 8 + - 3 ) = 5
48 9 41 47 addcomli ( - 3 + 8 ) = 5
49 39 48 eqtri ( - 3 + ( 1 · 8 ) ) = 5
50 49 oveq1i ( ( - 3 + ( 1 · 8 ) ) mod 8 ) = ( 5 mod 8 )
51 33 renegcli - 3 ∈ ℝ
52 modcyc ( ( - 3 ∈ ℝ ∧ 8 ∈ ℝ+ ∧ 1 ∈ ℤ ) → ( ( - 3 + ( 1 · 8 ) ) mod 8 ) = ( - 3 mod 8 ) )
53 51 4 21 52 mp3an ( ( - 3 + ( 1 · 8 ) ) mod 8 ) = ( - 3 mod 8 )
54 5re 5 ∈ ℝ
55 5pos 0 < 5
56 25 54 55 ltleii 0 ≤ 5
57 5lt8 5 < 8
58 modid ( ( ( 5 ∈ ℝ ∧ 8 ∈ ℝ+ ) ∧ ( 0 ≤ 5 ∧ 5 < 8 ) ) → ( 5 mod 8 ) = 5 )
59 54 4 56 57 58 mp4an ( 5 mod 8 ) = 5
60 50 53 59 3eqtr3i ( - 3 mod 8 ) = 5
61 38 60 pm3.2i ( ( 3 mod 8 ) = 3 ∧ ( - 3 mod 8 ) = 5 )
62 32 61 pm3.2i ( ( ( 1 mod 8 ) = 1 ∧ ( - 1 mod 8 ) = 7 ) ∧ ( ( 3 mod 8 ) = 3 ∧ ( - 3 mod 8 ) = 5 ) )