Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴 ) → 𝐴 ∈ ℤ ) |
2 |
|
8nn |
⊢ 8 ∈ ℕ |
3 |
|
zmodfz |
⊢ ( ( 𝐴 ∈ ℤ ∧ 8 ∈ ℕ ) → ( 𝐴 mod 8 ) ∈ ( 0 ... ( 8 − 1 ) ) ) |
4 |
1 2 3
|
sylancl |
⊢ ( ( 𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴 ) → ( 𝐴 mod 8 ) ∈ ( 0 ... ( 8 − 1 ) ) ) |
5 |
|
8m1e7 |
⊢ ( 8 − 1 ) = 7 |
6 |
5
|
oveq2i |
⊢ ( 0 ... ( 8 − 1 ) ) = ( 0 ... 7 ) |
7 |
4 6
|
eleqtrdi |
⊢ ( ( 𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴 ) → ( 𝐴 mod 8 ) ∈ ( 0 ... 7 ) ) |
8 |
|
neg1z |
⊢ - 1 ∈ ℤ |
9 |
|
z0even |
⊢ 2 ∥ 0 |
10 |
|
1pneg1e0 |
⊢ ( 1 + - 1 ) = 0 |
11 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
12 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
13 |
11 12
|
addcomi |
⊢ ( 1 + - 1 ) = ( - 1 + 1 ) |
14 |
10 13
|
eqtr3i |
⊢ 0 = ( - 1 + 1 ) |
15 |
9 14
|
breqtri |
⊢ 2 ∥ ( - 1 + 1 ) |
16 |
|
noel |
⊢ ¬ ( 𝐴 mod 8 ) ∈ ∅ |
17 |
16
|
pm2.21i |
⊢ ( ( 𝐴 mod 8 ) ∈ ∅ → ( 𝐴 mod 8 ) ∈ ( { 1 , 7 } ∪ { 3 , 5 } ) ) |
18 |
|
neg1lt0 |
⊢ - 1 < 0 |
19 |
|
0z |
⊢ 0 ∈ ℤ |
20 |
|
fzn |
⊢ ( ( 0 ∈ ℤ ∧ - 1 ∈ ℤ ) → ( - 1 < 0 ↔ ( 0 ... - 1 ) = ∅ ) ) |
21 |
19 8 20
|
mp2an |
⊢ ( - 1 < 0 ↔ ( 0 ... - 1 ) = ∅ ) |
22 |
18 21
|
mpbi |
⊢ ( 0 ... - 1 ) = ∅ |
23 |
17 22
|
eleq2s |
⊢ ( ( 𝐴 mod 8 ) ∈ ( 0 ... - 1 ) → ( 𝐴 mod 8 ) ∈ ( { 1 , 7 } ∪ { 3 , 5 } ) ) |
24 |
23
|
a1i |
⊢ ( ( 𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴 ) → ( ( 𝐴 mod 8 ) ∈ ( 0 ... - 1 ) → ( 𝐴 mod 8 ) ∈ ( { 1 , 7 } ∪ { 3 , 5 } ) ) ) |
25 |
8 15 24
|
3pm3.2i |
⊢ ( - 1 ∈ ℤ ∧ 2 ∥ ( - 1 + 1 ) ∧ ( ( 𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴 ) → ( ( 𝐴 mod 8 ) ∈ ( 0 ... - 1 ) → ( 𝐴 mod 8 ) ∈ ( { 1 , 7 } ∪ { 3 , 5 } ) ) ) ) |
26 |
|
1e0p1 |
⊢ 1 = ( 0 + 1 ) |
27 |
|
ssun1 |
⊢ { 1 , 7 } ⊆ ( { 1 , 7 } ∪ { 3 , 5 } ) |
28 |
|
1ex |
⊢ 1 ∈ V |
29 |
28
|
prid1 |
⊢ 1 ∈ { 1 , 7 } |
30 |
27 29
|
sselii |
⊢ 1 ∈ ( { 1 , 7 } ∪ { 3 , 5 } ) |
31 |
25 14 26 30
|
lgsdir2lem2 |
⊢ ( 1 ∈ ℤ ∧ 2 ∥ ( 1 + 1 ) ∧ ( ( 𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴 ) → ( ( 𝐴 mod 8 ) ∈ ( 0 ... 1 ) → ( 𝐴 mod 8 ) ∈ ( { 1 , 7 } ∪ { 3 , 5 } ) ) ) ) |
32 |
|
df-2 |
⊢ 2 = ( 1 + 1 ) |
33 |
|
df-3 |
⊢ 3 = ( 2 + 1 ) |
34 |
|
ssun2 |
⊢ { 3 , 5 } ⊆ ( { 1 , 7 } ∪ { 3 , 5 } ) |
35 |
|
3ex |
⊢ 3 ∈ V |
36 |
35
|
prid1 |
⊢ 3 ∈ { 3 , 5 } |
37 |
34 36
|
sselii |
⊢ 3 ∈ ( { 1 , 7 } ∪ { 3 , 5 } ) |
38 |
31 32 33 37
|
lgsdir2lem2 |
⊢ ( 3 ∈ ℤ ∧ 2 ∥ ( 3 + 1 ) ∧ ( ( 𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴 ) → ( ( 𝐴 mod 8 ) ∈ ( 0 ... 3 ) → ( 𝐴 mod 8 ) ∈ ( { 1 , 7 } ∪ { 3 , 5 } ) ) ) ) |
39 |
|
df-4 |
⊢ 4 = ( 3 + 1 ) |
40 |
|
df-5 |
⊢ 5 = ( 4 + 1 ) |
41 |
|
5nn |
⊢ 5 ∈ ℕ |
42 |
41
|
elexi |
⊢ 5 ∈ V |
43 |
42
|
prid2 |
⊢ 5 ∈ { 3 , 5 } |
44 |
34 43
|
sselii |
⊢ 5 ∈ ( { 1 , 7 } ∪ { 3 , 5 } ) |
45 |
38 39 40 44
|
lgsdir2lem2 |
⊢ ( 5 ∈ ℤ ∧ 2 ∥ ( 5 + 1 ) ∧ ( ( 𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴 ) → ( ( 𝐴 mod 8 ) ∈ ( 0 ... 5 ) → ( 𝐴 mod 8 ) ∈ ( { 1 , 7 } ∪ { 3 , 5 } ) ) ) ) |
46 |
|
df-6 |
⊢ 6 = ( 5 + 1 ) |
47 |
|
df-7 |
⊢ 7 = ( 6 + 1 ) |
48 |
|
7nn |
⊢ 7 ∈ ℕ |
49 |
48
|
elexi |
⊢ 7 ∈ V |
50 |
49
|
prid2 |
⊢ 7 ∈ { 1 , 7 } |
51 |
27 50
|
sselii |
⊢ 7 ∈ ( { 1 , 7 } ∪ { 3 , 5 } ) |
52 |
45 46 47 51
|
lgsdir2lem2 |
⊢ ( 7 ∈ ℤ ∧ 2 ∥ ( 7 + 1 ) ∧ ( ( 𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴 ) → ( ( 𝐴 mod 8 ) ∈ ( 0 ... 7 ) → ( 𝐴 mod 8 ) ∈ ( { 1 , 7 } ∪ { 3 , 5 } ) ) ) ) |
53 |
52
|
simp3i |
⊢ ( ( 𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴 ) → ( ( 𝐴 mod 8 ) ∈ ( 0 ... 7 ) → ( 𝐴 mod 8 ) ∈ ( { 1 , 7 } ∪ { 3 , 5 } ) ) ) |
54 |
7 53
|
mpd |
⊢ ( ( 𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴 ) → ( 𝐴 mod 8 ) ∈ ( { 1 , 7 } ∪ { 3 , 5 } ) ) |