Step |
Hyp |
Ref |
Expression |
1 |
|
ovex |
⊢ ( 𝐴 mod 8 ) ∈ V |
2 |
1
|
elpr |
⊢ ( ( 𝐴 mod 8 ) ∈ { 1 , 7 } ↔ ( ( 𝐴 mod 8 ) = 1 ∨ ( 𝐴 mod 8 ) = 7 ) ) |
3 |
|
zre |
⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℝ ) |
4 |
3
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐴 mod 8 ) = 1 ) → 𝐴 ∈ ℝ ) |
5 |
|
1red |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐴 mod 8 ) = 1 ) → 1 ∈ ℝ ) |
6 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐴 mod 8 ) = 1 ) → 𝐵 ∈ ℤ ) |
7 |
|
8re |
⊢ 8 ∈ ℝ |
8 |
|
8pos |
⊢ 0 < 8 |
9 |
7 8
|
elrpii |
⊢ 8 ∈ ℝ+ |
10 |
9
|
a1i |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐴 mod 8 ) = 1 ) → 8 ∈ ℝ+ ) |
11 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐴 mod 8 ) = 1 ) → ( 𝐴 mod 8 ) = 1 ) |
12 |
|
lgsdir2lem1 |
⊢ ( ( ( 1 mod 8 ) = 1 ∧ ( - 1 mod 8 ) = 7 ) ∧ ( ( 3 mod 8 ) = 3 ∧ ( - 3 mod 8 ) = 5 ) ) |
13 |
12
|
simpli |
⊢ ( ( 1 mod 8 ) = 1 ∧ ( - 1 mod 8 ) = 7 ) |
14 |
13
|
simpli |
⊢ ( 1 mod 8 ) = 1 |
15 |
11 14
|
eqtr4di |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐴 mod 8 ) = 1 ) → ( 𝐴 mod 8 ) = ( 1 mod 8 ) ) |
16 |
|
modmul1 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ∈ ℝ ) ∧ ( 𝐵 ∈ ℤ ∧ 8 ∈ ℝ+ ) ∧ ( 𝐴 mod 8 ) = ( 1 mod 8 ) ) → ( ( 𝐴 · 𝐵 ) mod 8 ) = ( ( 1 · 𝐵 ) mod 8 ) ) |
17 |
4 5 6 10 15 16
|
syl221anc |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐴 mod 8 ) = 1 ) → ( ( 𝐴 · 𝐵 ) mod 8 ) = ( ( 1 · 𝐵 ) mod 8 ) ) |
18 |
|
zcn |
⊢ ( 𝐵 ∈ ℤ → 𝐵 ∈ ℂ ) |
19 |
18
|
ad2antlr |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐴 mod 8 ) = 1 ) → 𝐵 ∈ ℂ ) |
20 |
19
|
mulid2d |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐴 mod 8 ) = 1 ) → ( 1 · 𝐵 ) = 𝐵 ) |
21 |
20
|
oveq1d |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐴 mod 8 ) = 1 ) → ( ( 1 · 𝐵 ) mod 8 ) = ( 𝐵 mod 8 ) ) |
22 |
17 21
|
eqtrd |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐴 mod 8 ) = 1 ) → ( ( 𝐴 · 𝐵 ) mod 8 ) = ( 𝐵 mod 8 ) ) |
23 |
22
|
eleq1d |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐴 mod 8 ) = 1 ) → ( ( ( 𝐴 · 𝐵 ) mod 8 ) ∈ { 1 , 7 } ↔ ( 𝐵 mod 8 ) ∈ { 1 , 7 } ) ) |
24 |
3
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐴 mod 8 ) = 7 ) → 𝐴 ∈ ℝ ) |
25 |
|
neg1rr |
⊢ - 1 ∈ ℝ |
26 |
25
|
a1i |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐴 mod 8 ) = 7 ) → - 1 ∈ ℝ ) |
27 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐴 mod 8 ) = 7 ) → 𝐵 ∈ ℤ ) |
28 |
9
|
a1i |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐴 mod 8 ) = 7 ) → 8 ∈ ℝ+ ) |
29 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐴 mod 8 ) = 7 ) → ( 𝐴 mod 8 ) = 7 ) |
30 |
13
|
simpri |
⊢ ( - 1 mod 8 ) = 7 |
31 |
29 30
|
eqtr4di |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐴 mod 8 ) = 7 ) → ( 𝐴 mod 8 ) = ( - 1 mod 8 ) ) |
32 |
|
modmul1 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ - 1 ∈ ℝ ) ∧ ( 𝐵 ∈ ℤ ∧ 8 ∈ ℝ+ ) ∧ ( 𝐴 mod 8 ) = ( - 1 mod 8 ) ) → ( ( 𝐴 · 𝐵 ) mod 8 ) = ( ( - 1 · 𝐵 ) mod 8 ) ) |
33 |
24 26 27 28 31 32
|
syl221anc |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐴 mod 8 ) = 7 ) → ( ( 𝐴 · 𝐵 ) mod 8 ) = ( ( - 1 · 𝐵 ) mod 8 ) ) |
34 |
18
|
ad2antlr |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐴 mod 8 ) = 7 ) → 𝐵 ∈ ℂ ) |
35 |
34
|
mulm1d |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐴 mod 8 ) = 7 ) → ( - 1 · 𝐵 ) = - 𝐵 ) |
36 |
35
|
oveq1d |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐴 mod 8 ) = 7 ) → ( ( - 1 · 𝐵 ) mod 8 ) = ( - 𝐵 mod 8 ) ) |
37 |
33 36
|
eqtrd |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐴 mod 8 ) = 7 ) → ( ( 𝐴 · 𝐵 ) mod 8 ) = ( - 𝐵 mod 8 ) ) |
38 |
37
|
eleq1d |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐴 mod 8 ) = 7 ) → ( ( ( 𝐴 · 𝐵 ) mod 8 ) ∈ { 1 , 7 } ↔ ( - 𝐵 mod 8 ) ∈ { 1 , 7 } ) ) |
39 |
|
znegcl |
⊢ ( 𝐵 ∈ ℤ → - 𝐵 ∈ ℤ ) |
40 |
|
oveq1 |
⊢ ( 𝑥 = - 𝐵 → ( 𝑥 mod 8 ) = ( - 𝐵 mod 8 ) ) |
41 |
40
|
eleq1d |
⊢ ( 𝑥 = - 𝐵 → ( ( 𝑥 mod 8 ) ∈ { 1 , 7 } ↔ ( - 𝐵 mod 8 ) ∈ { 1 , 7 } ) ) |
42 |
|
negeq |
⊢ ( 𝑥 = - 𝐵 → - 𝑥 = - - 𝐵 ) |
43 |
42
|
oveq1d |
⊢ ( 𝑥 = - 𝐵 → ( - 𝑥 mod 8 ) = ( - - 𝐵 mod 8 ) ) |
44 |
43
|
eleq1d |
⊢ ( 𝑥 = - 𝐵 → ( ( - 𝑥 mod 8 ) ∈ { 1 , 7 } ↔ ( - - 𝐵 mod 8 ) ∈ { 1 , 7 } ) ) |
45 |
41 44
|
imbi12d |
⊢ ( 𝑥 = - 𝐵 → ( ( ( 𝑥 mod 8 ) ∈ { 1 , 7 } → ( - 𝑥 mod 8 ) ∈ { 1 , 7 } ) ↔ ( ( - 𝐵 mod 8 ) ∈ { 1 , 7 } → ( - - 𝐵 mod 8 ) ∈ { 1 , 7 } ) ) ) |
46 |
|
zcn |
⊢ ( 𝑥 ∈ ℤ → 𝑥 ∈ ℂ ) |
47 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
48 |
|
mulcom |
⊢ ( ( 𝑥 ∈ ℂ ∧ - 1 ∈ ℂ ) → ( 𝑥 · - 1 ) = ( - 1 · 𝑥 ) ) |
49 |
47 48
|
mpan2 |
⊢ ( 𝑥 ∈ ℂ → ( 𝑥 · - 1 ) = ( - 1 · 𝑥 ) ) |
50 |
|
mulm1 |
⊢ ( 𝑥 ∈ ℂ → ( - 1 · 𝑥 ) = - 𝑥 ) |
51 |
49 50
|
eqtrd |
⊢ ( 𝑥 ∈ ℂ → ( 𝑥 · - 1 ) = - 𝑥 ) |
52 |
46 51
|
syl |
⊢ ( 𝑥 ∈ ℤ → ( 𝑥 · - 1 ) = - 𝑥 ) |
53 |
52
|
adantr |
⊢ ( ( 𝑥 ∈ ℤ ∧ ( 𝑥 mod 8 ) = 1 ) → ( 𝑥 · - 1 ) = - 𝑥 ) |
54 |
53
|
oveq1d |
⊢ ( ( 𝑥 ∈ ℤ ∧ ( 𝑥 mod 8 ) = 1 ) → ( ( 𝑥 · - 1 ) mod 8 ) = ( - 𝑥 mod 8 ) ) |
55 |
|
zre |
⊢ ( 𝑥 ∈ ℤ → 𝑥 ∈ ℝ ) |
56 |
55
|
adantr |
⊢ ( ( 𝑥 ∈ ℤ ∧ ( 𝑥 mod 8 ) = 1 ) → 𝑥 ∈ ℝ ) |
57 |
|
1red |
⊢ ( ( 𝑥 ∈ ℤ ∧ ( 𝑥 mod 8 ) = 1 ) → 1 ∈ ℝ ) |
58 |
|
neg1z |
⊢ - 1 ∈ ℤ |
59 |
58
|
a1i |
⊢ ( ( 𝑥 ∈ ℤ ∧ ( 𝑥 mod 8 ) = 1 ) → - 1 ∈ ℤ ) |
60 |
9
|
a1i |
⊢ ( ( 𝑥 ∈ ℤ ∧ ( 𝑥 mod 8 ) = 1 ) → 8 ∈ ℝ+ ) |
61 |
|
simpr |
⊢ ( ( 𝑥 ∈ ℤ ∧ ( 𝑥 mod 8 ) = 1 ) → ( 𝑥 mod 8 ) = 1 ) |
62 |
61 14
|
eqtr4di |
⊢ ( ( 𝑥 ∈ ℤ ∧ ( 𝑥 mod 8 ) = 1 ) → ( 𝑥 mod 8 ) = ( 1 mod 8 ) ) |
63 |
|
modmul1 |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 1 ∈ ℝ ) ∧ ( - 1 ∈ ℤ ∧ 8 ∈ ℝ+ ) ∧ ( 𝑥 mod 8 ) = ( 1 mod 8 ) ) → ( ( 𝑥 · - 1 ) mod 8 ) = ( ( 1 · - 1 ) mod 8 ) ) |
64 |
56 57 59 60 62 63
|
syl221anc |
⊢ ( ( 𝑥 ∈ ℤ ∧ ( 𝑥 mod 8 ) = 1 ) → ( ( 𝑥 · - 1 ) mod 8 ) = ( ( 1 · - 1 ) mod 8 ) ) |
65 |
54 64
|
eqtr3d |
⊢ ( ( 𝑥 ∈ ℤ ∧ ( 𝑥 mod 8 ) = 1 ) → ( - 𝑥 mod 8 ) = ( ( 1 · - 1 ) mod 8 ) ) |
66 |
47
|
mulid2i |
⊢ ( 1 · - 1 ) = - 1 |
67 |
66
|
oveq1i |
⊢ ( ( 1 · - 1 ) mod 8 ) = ( - 1 mod 8 ) |
68 |
67 30
|
eqtri |
⊢ ( ( 1 · - 1 ) mod 8 ) = 7 |
69 |
65 68
|
eqtrdi |
⊢ ( ( 𝑥 ∈ ℤ ∧ ( 𝑥 mod 8 ) = 1 ) → ( - 𝑥 mod 8 ) = 7 ) |
70 |
69
|
ex |
⊢ ( 𝑥 ∈ ℤ → ( ( 𝑥 mod 8 ) = 1 → ( - 𝑥 mod 8 ) = 7 ) ) |
71 |
52
|
adantr |
⊢ ( ( 𝑥 ∈ ℤ ∧ ( 𝑥 mod 8 ) = 7 ) → ( 𝑥 · - 1 ) = - 𝑥 ) |
72 |
71
|
oveq1d |
⊢ ( ( 𝑥 ∈ ℤ ∧ ( 𝑥 mod 8 ) = 7 ) → ( ( 𝑥 · - 1 ) mod 8 ) = ( - 𝑥 mod 8 ) ) |
73 |
55
|
adantr |
⊢ ( ( 𝑥 ∈ ℤ ∧ ( 𝑥 mod 8 ) = 7 ) → 𝑥 ∈ ℝ ) |
74 |
25
|
a1i |
⊢ ( ( 𝑥 ∈ ℤ ∧ ( 𝑥 mod 8 ) = 7 ) → - 1 ∈ ℝ ) |
75 |
58
|
a1i |
⊢ ( ( 𝑥 ∈ ℤ ∧ ( 𝑥 mod 8 ) = 7 ) → - 1 ∈ ℤ ) |
76 |
9
|
a1i |
⊢ ( ( 𝑥 ∈ ℤ ∧ ( 𝑥 mod 8 ) = 7 ) → 8 ∈ ℝ+ ) |
77 |
|
simpr |
⊢ ( ( 𝑥 ∈ ℤ ∧ ( 𝑥 mod 8 ) = 7 ) → ( 𝑥 mod 8 ) = 7 ) |
78 |
77 30
|
eqtr4di |
⊢ ( ( 𝑥 ∈ ℤ ∧ ( 𝑥 mod 8 ) = 7 ) → ( 𝑥 mod 8 ) = ( - 1 mod 8 ) ) |
79 |
|
modmul1 |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ - 1 ∈ ℝ ) ∧ ( - 1 ∈ ℤ ∧ 8 ∈ ℝ+ ) ∧ ( 𝑥 mod 8 ) = ( - 1 mod 8 ) ) → ( ( 𝑥 · - 1 ) mod 8 ) = ( ( - 1 · - 1 ) mod 8 ) ) |
80 |
73 74 75 76 78 79
|
syl221anc |
⊢ ( ( 𝑥 ∈ ℤ ∧ ( 𝑥 mod 8 ) = 7 ) → ( ( 𝑥 · - 1 ) mod 8 ) = ( ( - 1 · - 1 ) mod 8 ) ) |
81 |
72 80
|
eqtr3d |
⊢ ( ( 𝑥 ∈ ℤ ∧ ( 𝑥 mod 8 ) = 7 ) → ( - 𝑥 mod 8 ) = ( ( - 1 · - 1 ) mod 8 ) ) |
82 |
|
neg1mulneg1e1 |
⊢ ( - 1 · - 1 ) = 1 |
83 |
82
|
oveq1i |
⊢ ( ( - 1 · - 1 ) mod 8 ) = ( 1 mod 8 ) |
84 |
83 14
|
eqtri |
⊢ ( ( - 1 · - 1 ) mod 8 ) = 1 |
85 |
81 84
|
eqtrdi |
⊢ ( ( 𝑥 ∈ ℤ ∧ ( 𝑥 mod 8 ) = 7 ) → ( - 𝑥 mod 8 ) = 1 ) |
86 |
85
|
ex |
⊢ ( 𝑥 ∈ ℤ → ( ( 𝑥 mod 8 ) = 7 → ( - 𝑥 mod 8 ) = 1 ) ) |
87 |
70 86
|
orim12d |
⊢ ( 𝑥 ∈ ℤ → ( ( ( 𝑥 mod 8 ) = 1 ∨ ( 𝑥 mod 8 ) = 7 ) → ( ( - 𝑥 mod 8 ) = 7 ∨ ( - 𝑥 mod 8 ) = 1 ) ) ) |
88 |
|
ovex |
⊢ ( 𝑥 mod 8 ) ∈ V |
89 |
88
|
elpr |
⊢ ( ( 𝑥 mod 8 ) ∈ { 1 , 7 } ↔ ( ( 𝑥 mod 8 ) = 1 ∨ ( 𝑥 mod 8 ) = 7 ) ) |
90 |
|
ovex |
⊢ ( - 𝑥 mod 8 ) ∈ V |
91 |
90
|
elpr |
⊢ ( ( - 𝑥 mod 8 ) ∈ { 1 , 7 } ↔ ( ( - 𝑥 mod 8 ) = 1 ∨ ( - 𝑥 mod 8 ) = 7 ) ) |
92 |
|
orcom |
⊢ ( ( ( - 𝑥 mod 8 ) = 1 ∨ ( - 𝑥 mod 8 ) = 7 ) ↔ ( ( - 𝑥 mod 8 ) = 7 ∨ ( - 𝑥 mod 8 ) = 1 ) ) |
93 |
91 92
|
bitri |
⊢ ( ( - 𝑥 mod 8 ) ∈ { 1 , 7 } ↔ ( ( - 𝑥 mod 8 ) = 7 ∨ ( - 𝑥 mod 8 ) = 1 ) ) |
94 |
87 89 93
|
3imtr4g |
⊢ ( 𝑥 ∈ ℤ → ( ( 𝑥 mod 8 ) ∈ { 1 , 7 } → ( - 𝑥 mod 8 ) ∈ { 1 , 7 } ) ) |
95 |
45 94
|
vtoclga |
⊢ ( - 𝐵 ∈ ℤ → ( ( - 𝐵 mod 8 ) ∈ { 1 , 7 } → ( - - 𝐵 mod 8 ) ∈ { 1 , 7 } ) ) |
96 |
39 95
|
syl |
⊢ ( 𝐵 ∈ ℤ → ( ( - 𝐵 mod 8 ) ∈ { 1 , 7 } → ( - - 𝐵 mod 8 ) ∈ { 1 , 7 } ) ) |
97 |
18
|
negnegd |
⊢ ( 𝐵 ∈ ℤ → - - 𝐵 = 𝐵 ) |
98 |
97
|
oveq1d |
⊢ ( 𝐵 ∈ ℤ → ( - - 𝐵 mod 8 ) = ( 𝐵 mod 8 ) ) |
99 |
98
|
eleq1d |
⊢ ( 𝐵 ∈ ℤ → ( ( - - 𝐵 mod 8 ) ∈ { 1 , 7 } ↔ ( 𝐵 mod 8 ) ∈ { 1 , 7 } ) ) |
100 |
96 99
|
sylibd |
⊢ ( 𝐵 ∈ ℤ → ( ( - 𝐵 mod 8 ) ∈ { 1 , 7 } → ( 𝐵 mod 8 ) ∈ { 1 , 7 } ) ) |
101 |
|
oveq1 |
⊢ ( 𝑥 = 𝐵 → ( 𝑥 mod 8 ) = ( 𝐵 mod 8 ) ) |
102 |
101
|
eleq1d |
⊢ ( 𝑥 = 𝐵 → ( ( 𝑥 mod 8 ) ∈ { 1 , 7 } ↔ ( 𝐵 mod 8 ) ∈ { 1 , 7 } ) ) |
103 |
|
negeq |
⊢ ( 𝑥 = 𝐵 → - 𝑥 = - 𝐵 ) |
104 |
103
|
oveq1d |
⊢ ( 𝑥 = 𝐵 → ( - 𝑥 mod 8 ) = ( - 𝐵 mod 8 ) ) |
105 |
104
|
eleq1d |
⊢ ( 𝑥 = 𝐵 → ( ( - 𝑥 mod 8 ) ∈ { 1 , 7 } ↔ ( - 𝐵 mod 8 ) ∈ { 1 , 7 } ) ) |
106 |
102 105
|
imbi12d |
⊢ ( 𝑥 = 𝐵 → ( ( ( 𝑥 mod 8 ) ∈ { 1 , 7 } → ( - 𝑥 mod 8 ) ∈ { 1 , 7 } ) ↔ ( ( 𝐵 mod 8 ) ∈ { 1 , 7 } → ( - 𝐵 mod 8 ) ∈ { 1 , 7 } ) ) ) |
107 |
106 94
|
vtoclga |
⊢ ( 𝐵 ∈ ℤ → ( ( 𝐵 mod 8 ) ∈ { 1 , 7 } → ( - 𝐵 mod 8 ) ∈ { 1 , 7 } ) ) |
108 |
100 107
|
impbid |
⊢ ( 𝐵 ∈ ℤ → ( ( - 𝐵 mod 8 ) ∈ { 1 , 7 } ↔ ( 𝐵 mod 8 ) ∈ { 1 , 7 } ) ) |
109 |
108
|
ad2antlr |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐴 mod 8 ) = 7 ) → ( ( - 𝐵 mod 8 ) ∈ { 1 , 7 } ↔ ( 𝐵 mod 8 ) ∈ { 1 , 7 } ) ) |
110 |
38 109
|
bitrd |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐴 mod 8 ) = 7 ) → ( ( ( 𝐴 · 𝐵 ) mod 8 ) ∈ { 1 , 7 } ↔ ( 𝐵 mod 8 ) ∈ { 1 , 7 } ) ) |
111 |
23 110
|
jaodan |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( 𝐴 mod 8 ) = 1 ∨ ( 𝐴 mod 8 ) = 7 ) ) → ( ( ( 𝐴 · 𝐵 ) mod 8 ) ∈ { 1 , 7 } ↔ ( 𝐵 mod 8 ) ∈ { 1 , 7 } ) ) |
112 |
2 111
|
sylan2b |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐴 mod 8 ) ∈ { 1 , 7 } ) → ( ( ( 𝐴 · 𝐵 ) mod 8 ) ∈ { 1 , 7 } ↔ ( 𝐵 mod 8 ) ∈ { 1 , 7 } ) ) |