Step |
Hyp |
Ref |
Expression |
1 |
|
ovex |
⊢ ( 𝐴 mod 8 ) ∈ V |
2 |
1
|
elpr |
⊢ ( ( 𝐴 mod 8 ) ∈ { 3 , 5 } ↔ ( ( 𝐴 mod 8 ) = 3 ∨ ( 𝐴 mod 8 ) = 5 ) ) |
3 |
|
ovex |
⊢ ( 𝐵 mod 8 ) ∈ V |
4 |
3
|
elpr |
⊢ ( ( 𝐵 mod 8 ) ∈ { 3 , 5 } ↔ ( ( 𝐵 mod 8 ) = 3 ∨ ( 𝐵 mod 8 ) = 5 ) ) |
5 |
2 4
|
anbi12i |
⊢ ( ( ( 𝐴 mod 8 ) ∈ { 3 , 5 } ∧ ( 𝐵 mod 8 ) ∈ { 3 , 5 } ) ↔ ( ( ( 𝐴 mod 8 ) = 3 ∨ ( 𝐴 mod 8 ) = 5 ) ∧ ( ( 𝐵 mod 8 ) = 3 ∨ ( 𝐵 mod 8 ) = 5 ) ) ) |
6 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( 𝐴 mod 8 ) = 3 ∧ ( 𝐵 mod 8 ) = 3 ) ) → 𝐴 ∈ ℤ ) |
7 |
|
3z |
⊢ 3 ∈ ℤ |
8 |
7
|
a1i |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( 𝐴 mod 8 ) = 3 ∧ ( 𝐵 mod 8 ) = 3 ) ) → 3 ∈ ℤ ) |
9 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( 𝐴 mod 8 ) = 3 ∧ ( 𝐵 mod 8 ) = 3 ) ) → 𝐵 ∈ ℤ ) |
10 |
|
8re |
⊢ 8 ∈ ℝ |
11 |
|
8pos |
⊢ 0 < 8 |
12 |
10 11
|
elrpii |
⊢ 8 ∈ ℝ+ |
13 |
12
|
a1i |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( 𝐴 mod 8 ) = 3 ∧ ( 𝐵 mod 8 ) = 3 ) ) → 8 ∈ ℝ+ ) |
14 |
|
simprl |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( 𝐴 mod 8 ) = 3 ∧ ( 𝐵 mod 8 ) = 3 ) ) → ( 𝐴 mod 8 ) = 3 ) |
15 |
|
lgsdir2lem1 |
⊢ ( ( ( 1 mod 8 ) = 1 ∧ ( - 1 mod 8 ) = 7 ) ∧ ( ( 3 mod 8 ) = 3 ∧ ( - 3 mod 8 ) = 5 ) ) |
16 |
15
|
simpri |
⊢ ( ( 3 mod 8 ) = 3 ∧ ( - 3 mod 8 ) = 5 ) |
17 |
16
|
simpli |
⊢ ( 3 mod 8 ) = 3 |
18 |
14 17
|
eqtr4di |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( 𝐴 mod 8 ) = 3 ∧ ( 𝐵 mod 8 ) = 3 ) ) → ( 𝐴 mod 8 ) = ( 3 mod 8 ) ) |
19 |
|
simprr |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( 𝐴 mod 8 ) = 3 ∧ ( 𝐵 mod 8 ) = 3 ) ) → ( 𝐵 mod 8 ) = 3 ) |
20 |
19 17
|
eqtr4di |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( 𝐴 mod 8 ) = 3 ∧ ( 𝐵 mod 8 ) = 3 ) ) → ( 𝐵 mod 8 ) = ( 3 mod 8 ) ) |
21 |
6 8 9 8 13 18 20
|
modmul12d |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( 𝐴 mod 8 ) = 3 ∧ ( 𝐵 mod 8 ) = 3 ) ) → ( ( 𝐴 · 𝐵 ) mod 8 ) = ( ( 3 · 3 ) mod 8 ) ) |
22 |
21
|
orcd |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( 𝐴 mod 8 ) = 3 ∧ ( 𝐵 mod 8 ) = 3 ) ) → ( ( ( 𝐴 · 𝐵 ) mod 8 ) = ( ( 3 · 3 ) mod 8 ) ∨ ( ( 𝐴 · 𝐵 ) mod 8 ) = ( - ( 3 · 3 ) mod 8 ) ) ) |
23 |
22
|
ex |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( ( 𝐴 mod 8 ) = 3 ∧ ( 𝐵 mod 8 ) = 3 ) → ( ( ( 𝐴 · 𝐵 ) mod 8 ) = ( ( 3 · 3 ) mod 8 ) ∨ ( ( 𝐴 · 𝐵 ) mod 8 ) = ( - ( 3 · 3 ) mod 8 ) ) ) ) |
24 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( 𝐴 mod 8 ) = 5 ∧ ( 𝐵 mod 8 ) = 3 ) ) → 𝐴 ∈ ℤ ) |
25 |
|
znegcl |
⊢ ( 3 ∈ ℤ → - 3 ∈ ℤ ) |
26 |
7 25
|
mp1i |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( 𝐴 mod 8 ) = 5 ∧ ( 𝐵 mod 8 ) = 3 ) ) → - 3 ∈ ℤ ) |
27 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( 𝐴 mod 8 ) = 5 ∧ ( 𝐵 mod 8 ) = 3 ) ) → 𝐵 ∈ ℤ ) |
28 |
7
|
a1i |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( 𝐴 mod 8 ) = 5 ∧ ( 𝐵 mod 8 ) = 3 ) ) → 3 ∈ ℤ ) |
29 |
12
|
a1i |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( 𝐴 mod 8 ) = 5 ∧ ( 𝐵 mod 8 ) = 3 ) ) → 8 ∈ ℝ+ ) |
30 |
|
simprl |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( 𝐴 mod 8 ) = 5 ∧ ( 𝐵 mod 8 ) = 3 ) ) → ( 𝐴 mod 8 ) = 5 ) |
31 |
16
|
simpri |
⊢ ( - 3 mod 8 ) = 5 |
32 |
30 31
|
eqtr4di |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( 𝐴 mod 8 ) = 5 ∧ ( 𝐵 mod 8 ) = 3 ) ) → ( 𝐴 mod 8 ) = ( - 3 mod 8 ) ) |
33 |
|
simprr |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( 𝐴 mod 8 ) = 5 ∧ ( 𝐵 mod 8 ) = 3 ) ) → ( 𝐵 mod 8 ) = 3 ) |
34 |
33 17
|
eqtr4di |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( 𝐴 mod 8 ) = 5 ∧ ( 𝐵 mod 8 ) = 3 ) ) → ( 𝐵 mod 8 ) = ( 3 mod 8 ) ) |
35 |
24 26 27 28 29 32 34
|
modmul12d |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( 𝐴 mod 8 ) = 5 ∧ ( 𝐵 mod 8 ) = 3 ) ) → ( ( 𝐴 · 𝐵 ) mod 8 ) = ( ( - 3 · 3 ) mod 8 ) ) |
36 |
|
3cn |
⊢ 3 ∈ ℂ |
37 |
36 36
|
mulneg1i |
⊢ ( - 3 · 3 ) = - ( 3 · 3 ) |
38 |
37
|
oveq1i |
⊢ ( ( - 3 · 3 ) mod 8 ) = ( - ( 3 · 3 ) mod 8 ) |
39 |
35 38
|
eqtrdi |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( 𝐴 mod 8 ) = 5 ∧ ( 𝐵 mod 8 ) = 3 ) ) → ( ( 𝐴 · 𝐵 ) mod 8 ) = ( - ( 3 · 3 ) mod 8 ) ) |
40 |
39
|
olcd |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( 𝐴 mod 8 ) = 5 ∧ ( 𝐵 mod 8 ) = 3 ) ) → ( ( ( 𝐴 · 𝐵 ) mod 8 ) = ( ( 3 · 3 ) mod 8 ) ∨ ( ( 𝐴 · 𝐵 ) mod 8 ) = ( - ( 3 · 3 ) mod 8 ) ) ) |
41 |
40
|
ex |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( ( 𝐴 mod 8 ) = 5 ∧ ( 𝐵 mod 8 ) = 3 ) → ( ( ( 𝐴 · 𝐵 ) mod 8 ) = ( ( 3 · 3 ) mod 8 ) ∨ ( ( 𝐴 · 𝐵 ) mod 8 ) = ( - ( 3 · 3 ) mod 8 ) ) ) ) |
42 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( 𝐴 mod 8 ) = 3 ∧ ( 𝐵 mod 8 ) = 5 ) ) → 𝐴 ∈ ℤ ) |
43 |
7
|
a1i |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( 𝐴 mod 8 ) = 3 ∧ ( 𝐵 mod 8 ) = 5 ) ) → 3 ∈ ℤ ) |
44 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( 𝐴 mod 8 ) = 3 ∧ ( 𝐵 mod 8 ) = 5 ) ) → 𝐵 ∈ ℤ ) |
45 |
7 25
|
mp1i |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( 𝐴 mod 8 ) = 3 ∧ ( 𝐵 mod 8 ) = 5 ) ) → - 3 ∈ ℤ ) |
46 |
12
|
a1i |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( 𝐴 mod 8 ) = 3 ∧ ( 𝐵 mod 8 ) = 5 ) ) → 8 ∈ ℝ+ ) |
47 |
|
simprl |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( 𝐴 mod 8 ) = 3 ∧ ( 𝐵 mod 8 ) = 5 ) ) → ( 𝐴 mod 8 ) = 3 ) |
48 |
47 17
|
eqtr4di |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( 𝐴 mod 8 ) = 3 ∧ ( 𝐵 mod 8 ) = 5 ) ) → ( 𝐴 mod 8 ) = ( 3 mod 8 ) ) |
49 |
|
simprr |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( 𝐴 mod 8 ) = 3 ∧ ( 𝐵 mod 8 ) = 5 ) ) → ( 𝐵 mod 8 ) = 5 ) |
50 |
49 31
|
eqtr4di |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( 𝐴 mod 8 ) = 3 ∧ ( 𝐵 mod 8 ) = 5 ) ) → ( 𝐵 mod 8 ) = ( - 3 mod 8 ) ) |
51 |
42 43 44 45 46 48 50
|
modmul12d |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( 𝐴 mod 8 ) = 3 ∧ ( 𝐵 mod 8 ) = 5 ) ) → ( ( 𝐴 · 𝐵 ) mod 8 ) = ( ( 3 · - 3 ) mod 8 ) ) |
52 |
36 36
|
mulneg2i |
⊢ ( 3 · - 3 ) = - ( 3 · 3 ) |
53 |
52
|
oveq1i |
⊢ ( ( 3 · - 3 ) mod 8 ) = ( - ( 3 · 3 ) mod 8 ) |
54 |
51 53
|
eqtrdi |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( 𝐴 mod 8 ) = 3 ∧ ( 𝐵 mod 8 ) = 5 ) ) → ( ( 𝐴 · 𝐵 ) mod 8 ) = ( - ( 3 · 3 ) mod 8 ) ) |
55 |
54
|
olcd |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( 𝐴 mod 8 ) = 3 ∧ ( 𝐵 mod 8 ) = 5 ) ) → ( ( ( 𝐴 · 𝐵 ) mod 8 ) = ( ( 3 · 3 ) mod 8 ) ∨ ( ( 𝐴 · 𝐵 ) mod 8 ) = ( - ( 3 · 3 ) mod 8 ) ) ) |
56 |
55
|
ex |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( ( 𝐴 mod 8 ) = 3 ∧ ( 𝐵 mod 8 ) = 5 ) → ( ( ( 𝐴 · 𝐵 ) mod 8 ) = ( ( 3 · 3 ) mod 8 ) ∨ ( ( 𝐴 · 𝐵 ) mod 8 ) = ( - ( 3 · 3 ) mod 8 ) ) ) ) |
57 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( 𝐴 mod 8 ) = 5 ∧ ( 𝐵 mod 8 ) = 5 ) ) → 𝐴 ∈ ℤ ) |
58 |
7 25
|
mp1i |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( 𝐴 mod 8 ) = 5 ∧ ( 𝐵 mod 8 ) = 5 ) ) → - 3 ∈ ℤ ) |
59 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( 𝐴 mod 8 ) = 5 ∧ ( 𝐵 mod 8 ) = 5 ) ) → 𝐵 ∈ ℤ ) |
60 |
12
|
a1i |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( 𝐴 mod 8 ) = 5 ∧ ( 𝐵 mod 8 ) = 5 ) ) → 8 ∈ ℝ+ ) |
61 |
|
simprl |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( 𝐴 mod 8 ) = 5 ∧ ( 𝐵 mod 8 ) = 5 ) ) → ( 𝐴 mod 8 ) = 5 ) |
62 |
61 31
|
eqtr4di |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( 𝐴 mod 8 ) = 5 ∧ ( 𝐵 mod 8 ) = 5 ) ) → ( 𝐴 mod 8 ) = ( - 3 mod 8 ) ) |
63 |
|
simprr |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( 𝐴 mod 8 ) = 5 ∧ ( 𝐵 mod 8 ) = 5 ) ) → ( 𝐵 mod 8 ) = 5 ) |
64 |
63 31
|
eqtr4di |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( 𝐴 mod 8 ) = 5 ∧ ( 𝐵 mod 8 ) = 5 ) ) → ( 𝐵 mod 8 ) = ( - 3 mod 8 ) ) |
65 |
57 58 59 58 60 62 64
|
modmul12d |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( 𝐴 mod 8 ) = 5 ∧ ( 𝐵 mod 8 ) = 5 ) ) → ( ( 𝐴 · 𝐵 ) mod 8 ) = ( ( - 3 · - 3 ) mod 8 ) ) |
66 |
36 36
|
mul2negi |
⊢ ( - 3 · - 3 ) = ( 3 · 3 ) |
67 |
66
|
oveq1i |
⊢ ( ( - 3 · - 3 ) mod 8 ) = ( ( 3 · 3 ) mod 8 ) |
68 |
65 67
|
eqtrdi |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( 𝐴 mod 8 ) = 5 ∧ ( 𝐵 mod 8 ) = 5 ) ) → ( ( 𝐴 · 𝐵 ) mod 8 ) = ( ( 3 · 3 ) mod 8 ) ) |
69 |
68
|
orcd |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( 𝐴 mod 8 ) = 5 ∧ ( 𝐵 mod 8 ) = 5 ) ) → ( ( ( 𝐴 · 𝐵 ) mod 8 ) = ( ( 3 · 3 ) mod 8 ) ∨ ( ( 𝐴 · 𝐵 ) mod 8 ) = ( - ( 3 · 3 ) mod 8 ) ) ) |
70 |
69
|
ex |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( ( 𝐴 mod 8 ) = 5 ∧ ( 𝐵 mod 8 ) = 5 ) → ( ( ( 𝐴 · 𝐵 ) mod 8 ) = ( ( 3 · 3 ) mod 8 ) ∨ ( ( 𝐴 · 𝐵 ) mod 8 ) = ( - ( 3 · 3 ) mod 8 ) ) ) ) |
71 |
23 41 56 70
|
ccased |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( ( ( 𝐴 mod 8 ) = 3 ∨ ( 𝐴 mod 8 ) = 5 ) ∧ ( ( 𝐵 mod 8 ) = 3 ∨ ( 𝐵 mod 8 ) = 5 ) ) → ( ( ( 𝐴 · 𝐵 ) mod 8 ) = ( ( 3 · 3 ) mod 8 ) ∨ ( ( 𝐴 · 𝐵 ) mod 8 ) = ( - ( 3 · 3 ) mod 8 ) ) ) ) |
72 |
5 71
|
syl5bi |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( ( 𝐴 mod 8 ) ∈ { 3 , 5 } ∧ ( 𝐵 mod 8 ) ∈ { 3 , 5 } ) → ( ( ( 𝐴 · 𝐵 ) mod 8 ) = ( ( 3 · 3 ) mod 8 ) ∨ ( ( 𝐴 · 𝐵 ) mod 8 ) = ( - ( 3 · 3 ) mod 8 ) ) ) ) |
73 |
72
|
imp |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( 𝐴 mod 8 ) ∈ { 3 , 5 } ∧ ( 𝐵 mod 8 ) ∈ { 3 , 5 } ) ) → ( ( ( 𝐴 · 𝐵 ) mod 8 ) = ( ( 3 · 3 ) mod 8 ) ∨ ( ( 𝐴 · 𝐵 ) mod 8 ) = ( - ( 3 · 3 ) mod 8 ) ) ) |
74 |
|
ovex |
⊢ ( ( 𝐴 · 𝐵 ) mod 8 ) ∈ V |
75 |
74
|
elpr |
⊢ ( ( ( 𝐴 · 𝐵 ) mod 8 ) ∈ { ( ( 3 · 3 ) mod 8 ) , ( - ( 3 · 3 ) mod 8 ) } ↔ ( ( ( 𝐴 · 𝐵 ) mod 8 ) = ( ( 3 · 3 ) mod 8 ) ∨ ( ( 𝐴 · 𝐵 ) mod 8 ) = ( - ( 3 · 3 ) mod 8 ) ) ) |
76 |
73 75
|
sylibr |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( 𝐴 mod 8 ) ∈ { 3 , 5 } ∧ ( 𝐵 mod 8 ) ∈ { 3 , 5 } ) ) → ( ( 𝐴 · 𝐵 ) mod 8 ) ∈ { ( ( 3 · 3 ) mod 8 ) , ( - ( 3 · 3 ) mod 8 ) } ) |
77 |
|
df-9 |
⊢ 9 = ( 8 + 1 ) |
78 |
|
8cn |
⊢ 8 ∈ ℂ |
79 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
80 |
78 79
|
addcomi |
⊢ ( 8 + 1 ) = ( 1 + 8 ) |
81 |
77 80
|
eqtri |
⊢ 9 = ( 1 + 8 ) |
82 |
|
3t3e9 |
⊢ ( 3 · 3 ) = 9 |
83 |
78
|
mulid2i |
⊢ ( 1 · 8 ) = 8 |
84 |
83
|
oveq2i |
⊢ ( 1 + ( 1 · 8 ) ) = ( 1 + 8 ) |
85 |
81 82 84
|
3eqtr4i |
⊢ ( 3 · 3 ) = ( 1 + ( 1 · 8 ) ) |
86 |
85
|
oveq1i |
⊢ ( ( 3 · 3 ) mod 8 ) = ( ( 1 + ( 1 · 8 ) ) mod 8 ) |
87 |
|
1re |
⊢ 1 ∈ ℝ |
88 |
|
1z |
⊢ 1 ∈ ℤ |
89 |
|
modcyc |
⊢ ( ( 1 ∈ ℝ ∧ 8 ∈ ℝ+ ∧ 1 ∈ ℤ ) → ( ( 1 + ( 1 · 8 ) ) mod 8 ) = ( 1 mod 8 ) ) |
90 |
87 12 88 89
|
mp3an |
⊢ ( ( 1 + ( 1 · 8 ) ) mod 8 ) = ( 1 mod 8 ) |
91 |
86 90
|
eqtri |
⊢ ( ( 3 · 3 ) mod 8 ) = ( 1 mod 8 ) |
92 |
15
|
simpli |
⊢ ( ( 1 mod 8 ) = 1 ∧ ( - 1 mod 8 ) = 7 ) |
93 |
92
|
simpli |
⊢ ( 1 mod 8 ) = 1 |
94 |
91 93
|
eqtri |
⊢ ( ( 3 · 3 ) mod 8 ) = 1 |
95 |
|
znegcl |
⊢ ( 1 ∈ ℤ → - 1 ∈ ℤ ) |
96 |
88 95
|
mp1i |
⊢ ( ⊤ → - 1 ∈ ℤ ) |
97 |
|
3nn |
⊢ 3 ∈ ℕ |
98 |
97 97
|
nnmulcli |
⊢ ( 3 · 3 ) ∈ ℕ |
99 |
98
|
nnzi |
⊢ ( 3 · 3 ) ∈ ℤ |
100 |
99
|
a1i |
⊢ ( ⊤ → ( 3 · 3 ) ∈ ℤ ) |
101 |
88
|
a1i |
⊢ ( ⊤ → 1 ∈ ℤ ) |
102 |
12
|
a1i |
⊢ ( ⊤ → 8 ∈ ℝ+ ) |
103 |
|
eqidd |
⊢ ( ⊤ → ( - 1 mod 8 ) = ( - 1 mod 8 ) ) |
104 |
91
|
a1i |
⊢ ( ⊤ → ( ( 3 · 3 ) mod 8 ) = ( 1 mod 8 ) ) |
105 |
96 96 100 101 102 103 104
|
modmul12d |
⊢ ( ⊤ → ( ( - 1 · ( 3 · 3 ) ) mod 8 ) = ( ( - 1 · 1 ) mod 8 ) ) |
106 |
105
|
mptru |
⊢ ( ( - 1 · ( 3 · 3 ) ) mod 8 ) = ( ( - 1 · 1 ) mod 8 ) |
107 |
36 36
|
mulcli |
⊢ ( 3 · 3 ) ∈ ℂ |
108 |
107
|
mulm1i |
⊢ ( - 1 · ( 3 · 3 ) ) = - ( 3 · 3 ) |
109 |
108
|
oveq1i |
⊢ ( ( - 1 · ( 3 · 3 ) ) mod 8 ) = ( - ( 3 · 3 ) mod 8 ) |
110 |
79
|
mulm1i |
⊢ ( - 1 · 1 ) = - 1 |
111 |
110
|
oveq1i |
⊢ ( ( - 1 · 1 ) mod 8 ) = ( - 1 mod 8 ) |
112 |
106 109 111
|
3eqtr3i |
⊢ ( - ( 3 · 3 ) mod 8 ) = ( - 1 mod 8 ) |
113 |
92
|
simpri |
⊢ ( - 1 mod 8 ) = 7 |
114 |
112 113
|
eqtri |
⊢ ( - ( 3 · 3 ) mod 8 ) = 7 |
115 |
94 114
|
preq12i |
⊢ { ( ( 3 · 3 ) mod 8 ) , ( - ( 3 · 3 ) mod 8 ) } = { 1 , 7 } |
116 |
76 115
|
eleqtrdi |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( 𝐴 mod 8 ) ∈ { 3 , 5 } ∧ ( 𝐵 mod 8 ) ∈ { 3 , 5 } ) ) → ( ( 𝐴 · 𝐵 ) mod 8 ) ∈ { 1 , 7 } ) |