| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq1 |
⊢ ( 𝑥 = 𝐵 → ( 𝑥 /L 𝑁 ) = ( 𝐵 /L 𝑁 ) ) |
| 2 |
1
|
oveq1d |
⊢ ( 𝑥 = 𝐵 → ( ( 𝑥 /L 𝑁 ) · ( 0 /L 𝑁 ) ) = ( ( 𝐵 /L 𝑁 ) · ( 0 /L 𝑁 ) ) ) |
| 3 |
2
|
eqeq2d |
⊢ ( 𝑥 = 𝐵 → ( ( 0 /L 𝑁 ) = ( ( 𝑥 /L 𝑁 ) · ( 0 /L 𝑁 ) ) ↔ ( 0 /L 𝑁 ) = ( ( 𝐵 /L 𝑁 ) · ( 0 /L 𝑁 ) ) ) ) |
| 4 |
|
id |
⊢ ( 𝑥 ∈ ℤ → 𝑥 ∈ ℤ ) |
| 5 |
|
nn0z |
⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ ) |
| 6 |
|
lgscl |
⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑥 /L 𝑁 ) ∈ ℤ ) |
| 7 |
4 5 6
|
syl2anr |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ ℤ ) → ( 𝑥 /L 𝑁 ) ∈ ℤ ) |
| 8 |
7
|
zcnd |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ ℤ ) → ( 𝑥 /L 𝑁 ) ∈ ℂ ) |
| 9 |
8
|
adantr |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ ℤ ) ∧ ( 0 /L 𝑁 ) = 0 ) → ( 𝑥 /L 𝑁 ) ∈ ℂ ) |
| 10 |
9
|
mul01d |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ ℤ ) ∧ ( 0 /L 𝑁 ) = 0 ) → ( ( 𝑥 /L 𝑁 ) · 0 ) = 0 ) |
| 11 |
|
simpr |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ ℤ ) ∧ ( 0 /L 𝑁 ) = 0 ) → ( 0 /L 𝑁 ) = 0 ) |
| 12 |
11
|
oveq2d |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ ℤ ) ∧ ( 0 /L 𝑁 ) = 0 ) → ( ( 𝑥 /L 𝑁 ) · ( 0 /L 𝑁 ) ) = ( ( 𝑥 /L 𝑁 ) · 0 ) ) |
| 13 |
10 12 11
|
3eqtr4rd |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ ℤ ) ∧ ( 0 /L 𝑁 ) = 0 ) → ( 0 /L 𝑁 ) = ( ( 𝑥 /L 𝑁 ) · ( 0 /L 𝑁 ) ) ) |
| 14 |
|
0z |
⊢ 0 ∈ ℤ |
| 15 |
5
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ ℤ ) → 𝑁 ∈ ℤ ) |
| 16 |
|
lgsne0 |
⊢ ( ( 0 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 0 /L 𝑁 ) ≠ 0 ↔ ( 0 gcd 𝑁 ) = 1 ) ) |
| 17 |
14 15 16
|
sylancr |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ ℤ ) → ( ( 0 /L 𝑁 ) ≠ 0 ↔ ( 0 gcd 𝑁 ) = 1 ) ) |
| 18 |
|
gcdcom |
⊢ ( ( 0 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 0 gcd 𝑁 ) = ( 𝑁 gcd 0 ) ) |
| 19 |
14 15 18
|
sylancr |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ ℤ ) → ( 0 gcd 𝑁 ) = ( 𝑁 gcd 0 ) ) |
| 20 |
|
nn0gcdid0 |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 gcd 0 ) = 𝑁 ) |
| 21 |
20
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ ℤ ) → ( 𝑁 gcd 0 ) = 𝑁 ) |
| 22 |
19 21
|
eqtrd |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ ℤ ) → ( 0 gcd 𝑁 ) = 𝑁 ) |
| 23 |
22
|
eqeq1d |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ ℤ ) → ( ( 0 gcd 𝑁 ) = 1 ↔ 𝑁 = 1 ) ) |
| 24 |
|
lgs1 |
⊢ ( 𝑥 ∈ ℤ → ( 𝑥 /L 1 ) = 1 ) |
| 25 |
24
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ ℤ ) → ( 𝑥 /L 1 ) = 1 ) |
| 26 |
|
oveq2 |
⊢ ( 𝑁 = 1 → ( 𝑥 /L 𝑁 ) = ( 𝑥 /L 1 ) ) |
| 27 |
26
|
eqeq1d |
⊢ ( 𝑁 = 1 → ( ( 𝑥 /L 𝑁 ) = 1 ↔ ( 𝑥 /L 1 ) = 1 ) ) |
| 28 |
25 27
|
syl5ibrcom |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ ℤ ) → ( 𝑁 = 1 → ( 𝑥 /L 𝑁 ) = 1 ) ) |
| 29 |
23 28
|
sylbid |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ ℤ ) → ( ( 0 gcd 𝑁 ) = 1 → ( 𝑥 /L 𝑁 ) = 1 ) ) |
| 30 |
17 29
|
sylbid |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ ℤ ) → ( ( 0 /L 𝑁 ) ≠ 0 → ( 𝑥 /L 𝑁 ) = 1 ) ) |
| 31 |
30
|
imp |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ ℤ ) ∧ ( 0 /L 𝑁 ) ≠ 0 ) → ( 𝑥 /L 𝑁 ) = 1 ) |
| 32 |
31
|
oveq1d |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ ℤ ) ∧ ( 0 /L 𝑁 ) ≠ 0 ) → ( ( 𝑥 /L 𝑁 ) · ( 0 /L 𝑁 ) ) = ( 1 · ( 0 /L 𝑁 ) ) ) |
| 33 |
5
|
ad2antrr |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ ℤ ) ∧ ( 0 /L 𝑁 ) ≠ 0 ) → 𝑁 ∈ ℤ ) |
| 34 |
|
lgscl |
⊢ ( ( 0 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 0 /L 𝑁 ) ∈ ℤ ) |
| 35 |
14 33 34
|
sylancr |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ ℤ ) ∧ ( 0 /L 𝑁 ) ≠ 0 ) → ( 0 /L 𝑁 ) ∈ ℤ ) |
| 36 |
35
|
zcnd |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ ℤ ) ∧ ( 0 /L 𝑁 ) ≠ 0 ) → ( 0 /L 𝑁 ) ∈ ℂ ) |
| 37 |
36
|
mullidd |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ ℤ ) ∧ ( 0 /L 𝑁 ) ≠ 0 ) → ( 1 · ( 0 /L 𝑁 ) ) = ( 0 /L 𝑁 ) ) |
| 38 |
32 37
|
eqtr2d |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ ℤ ) ∧ ( 0 /L 𝑁 ) ≠ 0 ) → ( 0 /L 𝑁 ) = ( ( 𝑥 /L 𝑁 ) · ( 0 /L 𝑁 ) ) ) |
| 39 |
13 38
|
pm2.61dane |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ ℤ ) → ( 0 /L 𝑁 ) = ( ( 𝑥 /L 𝑁 ) · ( 0 /L 𝑁 ) ) ) |
| 40 |
39
|
ralrimiva |
⊢ ( 𝑁 ∈ ℕ0 → ∀ 𝑥 ∈ ℤ ( 0 /L 𝑁 ) = ( ( 𝑥 /L 𝑁 ) · ( 0 /L 𝑁 ) ) ) |
| 41 |
40
|
3ad2ant3 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) → ∀ 𝑥 ∈ ℤ ( 0 /L 𝑁 ) = ( ( 𝑥 /L 𝑁 ) · ( 0 /L 𝑁 ) ) ) |
| 42 |
|
simp2 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) → 𝐵 ∈ ℤ ) |
| 43 |
3 41 42
|
rspcdva |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) → ( 0 /L 𝑁 ) = ( ( 𝐵 /L 𝑁 ) · ( 0 /L 𝑁 ) ) ) |
| 44 |
43
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝐴 = 0 ) → ( 0 /L 𝑁 ) = ( ( 𝐵 /L 𝑁 ) · ( 0 /L 𝑁 ) ) ) |
| 45 |
5
|
3ad2ant3 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) → 𝑁 ∈ ℤ ) |
| 46 |
14 45 34
|
sylancr |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) → ( 0 /L 𝑁 ) ∈ ℤ ) |
| 47 |
46
|
zcnd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) → ( 0 /L 𝑁 ) ∈ ℂ ) |
| 48 |
47
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝐴 = 0 ) → ( 0 /L 𝑁 ) ∈ ℂ ) |
| 49 |
|
lgscl |
⊢ ( ( 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝐵 /L 𝑁 ) ∈ ℤ ) |
| 50 |
42 45 49
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐵 /L 𝑁 ) ∈ ℤ ) |
| 51 |
50
|
zcnd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐵 /L 𝑁 ) ∈ ℂ ) |
| 52 |
51
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝐴 = 0 ) → ( 𝐵 /L 𝑁 ) ∈ ℂ ) |
| 53 |
48 52
|
mulcomd |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝐴 = 0 ) → ( ( 0 /L 𝑁 ) · ( 𝐵 /L 𝑁 ) ) = ( ( 𝐵 /L 𝑁 ) · ( 0 /L 𝑁 ) ) ) |
| 54 |
44 53
|
eqtr4d |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝐴 = 0 ) → ( 0 /L 𝑁 ) = ( ( 0 /L 𝑁 ) · ( 𝐵 /L 𝑁 ) ) ) |
| 55 |
|
oveq1 |
⊢ ( 𝐴 = 0 → ( 𝐴 · 𝐵 ) = ( 0 · 𝐵 ) ) |
| 56 |
|
zcn |
⊢ ( 𝐵 ∈ ℤ → 𝐵 ∈ ℂ ) |
| 57 |
56
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) → 𝐵 ∈ ℂ ) |
| 58 |
57
|
mul02d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) → ( 0 · 𝐵 ) = 0 ) |
| 59 |
55 58
|
sylan9eqr |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝐴 = 0 ) → ( 𝐴 · 𝐵 ) = 0 ) |
| 60 |
59
|
oveq1d |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝐴 = 0 ) → ( ( 𝐴 · 𝐵 ) /L 𝑁 ) = ( 0 /L 𝑁 ) ) |
| 61 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝐴 = 0 ) → 𝐴 = 0 ) |
| 62 |
61
|
oveq1d |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝐴 = 0 ) → ( 𝐴 /L 𝑁 ) = ( 0 /L 𝑁 ) ) |
| 63 |
62
|
oveq1d |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝐴 = 0 ) → ( ( 𝐴 /L 𝑁 ) · ( 𝐵 /L 𝑁 ) ) = ( ( 0 /L 𝑁 ) · ( 𝐵 /L 𝑁 ) ) ) |
| 64 |
54 60 63
|
3eqtr4d |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝐴 = 0 ) → ( ( 𝐴 · 𝐵 ) /L 𝑁 ) = ( ( 𝐴 /L 𝑁 ) · ( 𝐵 /L 𝑁 ) ) ) |
| 65 |
|
oveq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 /L 𝑁 ) = ( 𝐴 /L 𝑁 ) ) |
| 66 |
65
|
oveq1d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 /L 𝑁 ) · ( 0 /L 𝑁 ) ) = ( ( 𝐴 /L 𝑁 ) · ( 0 /L 𝑁 ) ) ) |
| 67 |
66
|
eqeq2d |
⊢ ( 𝑥 = 𝐴 → ( ( 0 /L 𝑁 ) = ( ( 𝑥 /L 𝑁 ) · ( 0 /L 𝑁 ) ) ↔ ( 0 /L 𝑁 ) = ( ( 𝐴 /L 𝑁 ) · ( 0 /L 𝑁 ) ) ) ) |
| 68 |
|
simp1 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) → 𝐴 ∈ ℤ ) |
| 69 |
67 41 68
|
rspcdva |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) → ( 0 /L 𝑁 ) = ( ( 𝐴 /L 𝑁 ) · ( 0 /L 𝑁 ) ) ) |
| 70 |
69
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝐵 = 0 ) → ( 0 /L 𝑁 ) = ( ( 𝐴 /L 𝑁 ) · ( 0 /L 𝑁 ) ) ) |
| 71 |
|
oveq2 |
⊢ ( 𝐵 = 0 → ( 𝐴 · 𝐵 ) = ( 𝐴 · 0 ) ) |
| 72 |
68
|
zcnd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) → 𝐴 ∈ ℂ ) |
| 73 |
72
|
mul01d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 · 0 ) = 0 ) |
| 74 |
71 73
|
sylan9eqr |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝐵 = 0 ) → ( 𝐴 · 𝐵 ) = 0 ) |
| 75 |
74
|
oveq1d |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝐵 = 0 ) → ( ( 𝐴 · 𝐵 ) /L 𝑁 ) = ( 0 /L 𝑁 ) ) |
| 76 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝐵 = 0 ) → 𝐵 = 0 ) |
| 77 |
76
|
oveq1d |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝐵 = 0 ) → ( 𝐵 /L 𝑁 ) = ( 0 /L 𝑁 ) ) |
| 78 |
77
|
oveq2d |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝐵 = 0 ) → ( ( 𝐴 /L 𝑁 ) · ( 𝐵 /L 𝑁 ) ) = ( ( 𝐴 /L 𝑁 ) · ( 0 /L 𝑁 ) ) ) |
| 79 |
70 75 78
|
3eqtr4d |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝐵 = 0 ) → ( ( 𝐴 · 𝐵 ) /L 𝑁 ) = ( ( 𝐴 /L 𝑁 ) · ( 𝐵 /L 𝑁 ) ) ) |
| 80 |
|
lgsdir |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ) ) → ( ( 𝐴 · 𝐵 ) /L 𝑁 ) = ( ( 𝐴 /L 𝑁 ) · ( 𝐵 /L 𝑁 ) ) ) |
| 81 |
5 80
|
syl3anl3 |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ) ) → ( ( 𝐴 · 𝐵 ) /L 𝑁 ) = ( ( 𝐴 /L 𝑁 ) · ( 𝐵 /L 𝑁 ) ) ) |
| 82 |
64 79 81
|
pm2.61da2ne |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝐴 · 𝐵 ) /L 𝑁 ) = ( ( 𝐴 /L 𝑁 ) · ( 𝐵 /L 𝑁 ) ) ) |