Description: Closure of the function F which defines the Legendre symbol at the primes. (Contributed by Mario Carneiro, 4-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | lgsval.1 | ⊢ 𝐹 = ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ ℙ , ( if ( 𝑛 = 2 , if ( 2 ∥ 𝐴 , 0 , if ( ( 𝐴 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) , ( ( ( ( 𝐴 ↑ ( ( 𝑛 − 1 ) / 2 ) ) + 1 ) mod 𝑛 ) − 1 ) ) ↑ ( 𝑛 pCnt 𝑁 ) ) , 1 ) ) | |
Assertion | lgsfcl | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) → 𝐹 : ℕ ⟶ ℤ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lgsval.1 | ⊢ 𝐹 = ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ ℙ , ( if ( 𝑛 = 2 , if ( 2 ∥ 𝐴 , 0 , if ( ( 𝐴 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) , ( ( ( ( 𝐴 ↑ ( ( 𝑛 − 1 ) / 2 ) ) + 1 ) mod 𝑛 ) − 1 ) ) ↑ ( 𝑛 pCnt 𝑁 ) ) , 1 ) ) | |
2 | eqid | ⊢ { 𝑥 ∈ ℤ ∣ ( abs ‘ 𝑥 ) ≤ 1 } = { 𝑥 ∈ ℤ ∣ ( abs ‘ 𝑥 ) ≤ 1 } | |
3 | 1 2 | lgsfcl2 | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) → 𝐹 : ℕ ⟶ { 𝑥 ∈ ℤ ∣ ( abs ‘ 𝑥 ) ≤ 1 } ) |
4 | ssrab2 | ⊢ { 𝑥 ∈ ℤ ∣ ( abs ‘ 𝑥 ) ≤ 1 } ⊆ ℤ | |
5 | fss | ⊢ ( ( 𝐹 : ℕ ⟶ { 𝑥 ∈ ℤ ∣ ( abs ‘ 𝑥 ) ≤ 1 } ∧ { 𝑥 ∈ ℤ ∣ ( abs ‘ 𝑥 ) ≤ 1 } ⊆ ℤ ) → 𝐹 : ℕ ⟶ ℤ ) | |
6 | 3 4 5 | sylancl | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) → 𝐹 : ℕ ⟶ ℤ ) |