| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lgsval.1 | ⊢ 𝐹  =  ( 𝑛  ∈  ℕ  ↦  if ( 𝑛  ∈  ℙ ,  ( if ( 𝑛  =  2 ,  if ( 2  ∥  𝐴 ,  0 ,  if ( ( 𝐴  mod  8 )  ∈  { 1 ,  7 } ,  1 ,  - 1 ) ) ,  ( ( ( ( 𝐴 ↑ ( ( 𝑛  −  1 )  /  2 ) )  +  1 )  mod  𝑛 )  −  1 ) ) ↑ ( 𝑛  pCnt  𝑁 ) ) ,  1 ) ) | 
						
							| 2 |  | lgsfcl2.z | ⊢ 𝑍  =  { 𝑥  ∈  ℤ  ∣  ( abs ‘ 𝑥 )  ≤  1 } | 
						
							| 3 |  | 0z | ⊢ 0  ∈  ℤ | 
						
							| 4 |  | 0le1 | ⊢ 0  ≤  1 | 
						
							| 5 |  | fveq2 | ⊢ ( 𝑥  =  0  →  ( abs ‘ 𝑥 )  =  ( abs ‘ 0 ) ) | 
						
							| 6 |  | abs0 | ⊢ ( abs ‘ 0 )  =  0 | 
						
							| 7 | 5 6 | eqtrdi | ⊢ ( 𝑥  =  0  →  ( abs ‘ 𝑥 )  =  0 ) | 
						
							| 8 | 7 | breq1d | ⊢ ( 𝑥  =  0  →  ( ( abs ‘ 𝑥 )  ≤  1  ↔  0  ≤  1 ) ) | 
						
							| 9 | 8 2 | elrab2 | ⊢ ( 0  ∈  𝑍  ↔  ( 0  ∈  ℤ  ∧  0  ≤  1 ) ) | 
						
							| 10 | 3 4 9 | mpbir2an | ⊢ 0  ∈  𝑍 | 
						
							| 11 |  | 1z | ⊢ 1  ∈  ℤ | 
						
							| 12 |  | 1le1 | ⊢ 1  ≤  1 | 
						
							| 13 |  | fveq2 | ⊢ ( 𝑥  =  1  →  ( abs ‘ 𝑥 )  =  ( abs ‘ 1 ) ) | 
						
							| 14 |  | abs1 | ⊢ ( abs ‘ 1 )  =  1 | 
						
							| 15 | 13 14 | eqtrdi | ⊢ ( 𝑥  =  1  →  ( abs ‘ 𝑥 )  =  1 ) | 
						
							| 16 | 15 | breq1d | ⊢ ( 𝑥  =  1  →  ( ( abs ‘ 𝑥 )  ≤  1  ↔  1  ≤  1 ) ) | 
						
							| 17 | 16 2 | elrab2 | ⊢ ( 1  ∈  𝑍  ↔  ( 1  ∈  ℤ  ∧  1  ≤  1 ) ) | 
						
							| 18 | 11 12 17 | mpbir2an | ⊢ 1  ∈  𝑍 | 
						
							| 19 |  | neg1z | ⊢ - 1  ∈  ℤ | 
						
							| 20 |  | fveq2 | ⊢ ( 𝑥  =  - 1  →  ( abs ‘ 𝑥 )  =  ( abs ‘ - 1 ) ) | 
						
							| 21 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 22 | 21 | absnegi | ⊢ ( abs ‘ - 1 )  =  ( abs ‘ 1 ) | 
						
							| 23 | 22 14 | eqtri | ⊢ ( abs ‘ - 1 )  =  1 | 
						
							| 24 | 20 23 | eqtrdi | ⊢ ( 𝑥  =  - 1  →  ( abs ‘ 𝑥 )  =  1 ) | 
						
							| 25 | 24 | breq1d | ⊢ ( 𝑥  =  - 1  →  ( ( abs ‘ 𝑥 )  ≤  1  ↔  1  ≤  1 ) ) | 
						
							| 26 | 25 2 | elrab2 | ⊢ ( - 1  ∈  𝑍  ↔  ( - 1  ∈  ℤ  ∧  1  ≤  1 ) ) | 
						
							| 27 | 19 12 26 | mpbir2an | ⊢ - 1  ∈  𝑍 | 
						
							| 28 | 18 27 | ifcli | ⊢ if ( ( 𝐴  mod  8 )  ∈  { 1 ,  7 } ,  1 ,  - 1 )  ∈  𝑍 | 
						
							| 29 | 10 28 | ifcli | ⊢ if ( 2  ∥  𝐴 ,  0 ,  if ( ( 𝐴  mod  8 )  ∈  { 1 ,  7 } ,  1 ,  - 1 ) )  ∈  𝑍 | 
						
							| 30 | 29 | a1i | ⊢ ( ( ( ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝑁  ≠  0 )  ∧  𝑛  ∈  ℕ )  ∧  𝑛  ∈  ℙ )  ∧  𝑛  =  2 )  →  if ( 2  ∥  𝐴 ,  0 ,  if ( ( 𝐴  mod  8 )  ∈  { 1 ,  7 } ,  1 ,  - 1 ) )  ∈  𝑍 ) | 
						
							| 31 |  | simpl1 | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝑁  ≠  0 )  ∧  𝑛  ∈  ℕ )  →  𝐴  ∈  ℤ ) | 
						
							| 32 | 31 | ad2antrr | ⊢ ( ( ( ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝑁  ≠  0 )  ∧  𝑛  ∈  ℕ )  ∧  𝑛  ∈  ℙ )  ∧  ¬  𝑛  =  2 )  →  𝐴  ∈  ℤ ) | 
						
							| 33 |  | simplr | ⊢ ( ( ( ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝑁  ≠  0 )  ∧  𝑛  ∈  ℕ )  ∧  𝑛  ∈  ℙ )  ∧  ¬  𝑛  =  2 )  →  𝑛  ∈  ℙ ) | 
						
							| 34 |  | simpr | ⊢ ( ( ( ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝑁  ≠  0 )  ∧  𝑛  ∈  ℕ )  ∧  𝑛  ∈  ℙ )  ∧  ¬  𝑛  =  2 )  →  ¬  𝑛  =  2 ) | 
						
							| 35 | 34 | neqned | ⊢ ( ( ( ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝑁  ≠  0 )  ∧  𝑛  ∈  ℕ )  ∧  𝑛  ∈  ℙ )  ∧  ¬  𝑛  =  2 )  →  𝑛  ≠  2 ) | 
						
							| 36 |  | eldifsn | ⊢ ( 𝑛  ∈  ( ℙ  ∖  { 2 } )  ↔  ( 𝑛  ∈  ℙ  ∧  𝑛  ≠  2 ) ) | 
						
							| 37 | 33 35 36 | sylanbrc | ⊢ ( ( ( ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝑁  ≠  0 )  ∧  𝑛  ∈  ℕ )  ∧  𝑛  ∈  ℙ )  ∧  ¬  𝑛  =  2 )  →  𝑛  ∈  ( ℙ  ∖  { 2 } ) ) | 
						
							| 38 | 2 | lgslem4 | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑛  ∈  ( ℙ  ∖  { 2 } ) )  →  ( ( ( ( 𝐴 ↑ ( ( 𝑛  −  1 )  /  2 ) )  +  1 )  mod  𝑛 )  −  1 )  ∈  𝑍 ) | 
						
							| 39 | 32 37 38 | syl2anc | ⊢ ( ( ( ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝑁  ≠  0 )  ∧  𝑛  ∈  ℕ )  ∧  𝑛  ∈  ℙ )  ∧  ¬  𝑛  =  2 )  →  ( ( ( ( 𝐴 ↑ ( ( 𝑛  −  1 )  /  2 ) )  +  1 )  mod  𝑛 )  −  1 )  ∈  𝑍 ) | 
						
							| 40 | 30 39 | ifclda | ⊢ ( ( ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝑁  ≠  0 )  ∧  𝑛  ∈  ℕ )  ∧  𝑛  ∈  ℙ )  →  if ( 𝑛  =  2 ,  if ( 2  ∥  𝐴 ,  0 ,  if ( ( 𝐴  mod  8 )  ∈  { 1 ,  7 } ,  1 ,  - 1 ) ) ,  ( ( ( ( 𝐴 ↑ ( ( 𝑛  −  1 )  /  2 ) )  +  1 )  mod  𝑛 )  −  1 ) )  ∈  𝑍 ) | 
						
							| 41 |  | simpr | ⊢ ( ( ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝑁  ≠  0 )  ∧  𝑛  ∈  ℕ )  ∧  𝑛  ∈  ℙ )  →  𝑛  ∈  ℙ ) | 
						
							| 42 |  | simpll2 | ⊢ ( ( ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝑁  ≠  0 )  ∧  𝑛  ∈  ℕ )  ∧  𝑛  ∈  ℙ )  →  𝑁  ∈  ℤ ) | 
						
							| 43 |  | simpll3 | ⊢ ( ( ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝑁  ≠  0 )  ∧  𝑛  ∈  ℕ )  ∧  𝑛  ∈  ℙ )  →  𝑁  ≠  0 ) | 
						
							| 44 |  | pczcl | ⊢ ( ( 𝑛  ∈  ℙ  ∧  ( 𝑁  ∈  ℤ  ∧  𝑁  ≠  0 ) )  →  ( 𝑛  pCnt  𝑁 )  ∈  ℕ0 ) | 
						
							| 45 | 41 42 43 44 | syl12anc | ⊢ ( ( ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝑁  ≠  0 )  ∧  𝑛  ∈  ℕ )  ∧  𝑛  ∈  ℙ )  →  ( 𝑛  pCnt  𝑁 )  ∈  ℕ0 ) | 
						
							| 46 | 2 | ssrab3 | ⊢ 𝑍  ⊆  ℤ | 
						
							| 47 |  | zsscn | ⊢ ℤ  ⊆  ℂ | 
						
							| 48 | 46 47 | sstri | ⊢ 𝑍  ⊆  ℂ | 
						
							| 49 | 2 | lgslem3 | ⊢ ( ( 𝑎  ∈  𝑍  ∧  𝑏  ∈  𝑍 )  →  ( 𝑎  ·  𝑏 )  ∈  𝑍 ) | 
						
							| 50 | 48 49 18 | expcllem | ⊢ ( ( if ( 𝑛  =  2 ,  if ( 2  ∥  𝐴 ,  0 ,  if ( ( 𝐴  mod  8 )  ∈  { 1 ,  7 } ,  1 ,  - 1 ) ) ,  ( ( ( ( 𝐴 ↑ ( ( 𝑛  −  1 )  /  2 ) )  +  1 )  mod  𝑛 )  −  1 ) )  ∈  𝑍  ∧  ( 𝑛  pCnt  𝑁 )  ∈  ℕ0 )  →  ( if ( 𝑛  =  2 ,  if ( 2  ∥  𝐴 ,  0 ,  if ( ( 𝐴  mod  8 )  ∈  { 1 ,  7 } ,  1 ,  - 1 ) ) ,  ( ( ( ( 𝐴 ↑ ( ( 𝑛  −  1 )  /  2 ) )  +  1 )  mod  𝑛 )  −  1 ) ) ↑ ( 𝑛  pCnt  𝑁 ) )  ∈  𝑍 ) | 
						
							| 51 | 40 45 50 | syl2anc | ⊢ ( ( ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝑁  ≠  0 )  ∧  𝑛  ∈  ℕ )  ∧  𝑛  ∈  ℙ )  →  ( if ( 𝑛  =  2 ,  if ( 2  ∥  𝐴 ,  0 ,  if ( ( 𝐴  mod  8 )  ∈  { 1 ,  7 } ,  1 ,  - 1 ) ) ,  ( ( ( ( 𝐴 ↑ ( ( 𝑛  −  1 )  /  2 ) )  +  1 )  mod  𝑛 )  −  1 ) ) ↑ ( 𝑛  pCnt  𝑁 ) )  ∈  𝑍 ) | 
						
							| 52 | 18 | a1i | ⊢ ( ( ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝑁  ≠  0 )  ∧  𝑛  ∈  ℕ )  ∧  ¬  𝑛  ∈  ℙ )  →  1  ∈  𝑍 ) | 
						
							| 53 | 51 52 | ifclda | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝑁  ≠  0 )  ∧  𝑛  ∈  ℕ )  →  if ( 𝑛  ∈  ℙ ,  ( if ( 𝑛  =  2 ,  if ( 2  ∥  𝐴 ,  0 ,  if ( ( 𝐴  mod  8 )  ∈  { 1 ,  7 } ,  1 ,  - 1 ) ) ,  ( ( ( ( 𝐴 ↑ ( ( 𝑛  −  1 )  /  2 ) )  +  1 )  mod  𝑛 )  −  1 ) ) ↑ ( 𝑛  pCnt  𝑁 ) ) ,  1 )  ∈  𝑍 ) | 
						
							| 54 | 53 1 | fmptd | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝑁  ≠  0 )  →  𝐹 : ℕ ⟶ 𝑍 ) |