Step |
Hyp |
Ref |
Expression |
1 |
|
lgsval.1 |
⊢ 𝐹 = ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ ℙ , ( if ( 𝑛 = 2 , if ( 2 ∥ 𝐴 , 0 , if ( ( 𝐴 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) , ( ( ( ( 𝐴 ↑ ( ( 𝑛 − 1 ) / 2 ) ) + 1 ) mod 𝑛 ) − 1 ) ) ↑ ( 𝑛 pCnt 𝑁 ) ) , 1 ) ) |
2 |
|
lgsfcl2.z |
⊢ 𝑍 = { 𝑥 ∈ ℤ ∣ ( abs ‘ 𝑥 ) ≤ 1 } |
3 |
|
0z |
⊢ 0 ∈ ℤ |
4 |
|
0le1 |
⊢ 0 ≤ 1 |
5 |
|
fveq2 |
⊢ ( 𝑥 = 0 → ( abs ‘ 𝑥 ) = ( abs ‘ 0 ) ) |
6 |
|
abs0 |
⊢ ( abs ‘ 0 ) = 0 |
7 |
5 6
|
eqtrdi |
⊢ ( 𝑥 = 0 → ( abs ‘ 𝑥 ) = 0 ) |
8 |
7
|
breq1d |
⊢ ( 𝑥 = 0 → ( ( abs ‘ 𝑥 ) ≤ 1 ↔ 0 ≤ 1 ) ) |
9 |
8 2
|
elrab2 |
⊢ ( 0 ∈ 𝑍 ↔ ( 0 ∈ ℤ ∧ 0 ≤ 1 ) ) |
10 |
3 4 9
|
mpbir2an |
⊢ 0 ∈ 𝑍 |
11 |
|
1z |
⊢ 1 ∈ ℤ |
12 |
|
1le1 |
⊢ 1 ≤ 1 |
13 |
|
fveq2 |
⊢ ( 𝑥 = 1 → ( abs ‘ 𝑥 ) = ( abs ‘ 1 ) ) |
14 |
|
abs1 |
⊢ ( abs ‘ 1 ) = 1 |
15 |
13 14
|
eqtrdi |
⊢ ( 𝑥 = 1 → ( abs ‘ 𝑥 ) = 1 ) |
16 |
15
|
breq1d |
⊢ ( 𝑥 = 1 → ( ( abs ‘ 𝑥 ) ≤ 1 ↔ 1 ≤ 1 ) ) |
17 |
16 2
|
elrab2 |
⊢ ( 1 ∈ 𝑍 ↔ ( 1 ∈ ℤ ∧ 1 ≤ 1 ) ) |
18 |
11 12 17
|
mpbir2an |
⊢ 1 ∈ 𝑍 |
19 |
|
neg1z |
⊢ - 1 ∈ ℤ |
20 |
|
fveq2 |
⊢ ( 𝑥 = - 1 → ( abs ‘ 𝑥 ) = ( abs ‘ - 1 ) ) |
21 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
22 |
21
|
absnegi |
⊢ ( abs ‘ - 1 ) = ( abs ‘ 1 ) |
23 |
22 14
|
eqtri |
⊢ ( abs ‘ - 1 ) = 1 |
24 |
20 23
|
eqtrdi |
⊢ ( 𝑥 = - 1 → ( abs ‘ 𝑥 ) = 1 ) |
25 |
24
|
breq1d |
⊢ ( 𝑥 = - 1 → ( ( abs ‘ 𝑥 ) ≤ 1 ↔ 1 ≤ 1 ) ) |
26 |
25 2
|
elrab2 |
⊢ ( - 1 ∈ 𝑍 ↔ ( - 1 ∈ ℤ ∧ 1 ≤ 1 ) ) |
27 |
19 12 26
|
mpbir2an |
⊢ - 1 ∈ 𝑍 |
28 |
18 27
|
ifcli |
⊢ if ( ( 𝐴 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ∈ 𝑍 |
29 |
10 28
|
ifcli |
⊢ if ( 2 ∥ 𝐴 , 0 , if ( ( 𝐴 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) ∈ 𝑍 |
30 |
29
|
a1i |
⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑛 ∈ ℙ ) ∧ 𝑛 = 2 ) → if ( 2 ∥ 𝐴 , 0 , if ( ( 𝐴 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) ∈ 𝑍 ) |
31 |
|
simpl1 |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ∧ 𝑛 ∈ ℕ ) → 𝐴 ∈ ℤ ) |
32 |
31
|
ad2antrr |
⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑛 ∈ ℙ ) ∧ ¬ 𝑛 = 2 ) → 𝐴 ∈ ℤ ) |
33 |
|
simplr |
⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑛 ∈ ℙ ) ∧ ¬ 𝑛 = 2 ) → 𝑛 ∈ ℙ ) |
34 |
|
simpr |
⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑛 ∈ ℙ ) ∧ ¬ 𝑛 = 2 ) → ¬ 𝑛 = 2 ) |
35 |
34
|
neqned |
⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑛 ∈ ℙ ) ∧ ¬ 𝑛 = 2 ) → 𝑛 ≠ 2 ) |
36 |
|
eldifsn |
⊢ ( 𝑛 ∈ ( ℙ ∖ { 2 } ) ↔ ( 𝑛 ∈ ℙ ∧ 𝑛 ≠ 2 ) ) |
37 |
33 35 36
|
sylanbrc |
⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑛 ∈ ℙ ) ∧ ¬ 𝑛 = 2 ) → 𝑛 ∈ ( ℙ ∖ { 2 } ) ) |
38 |
2
|
lgslem4 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑛 ∈ ( ℙ ∖ { 2 } ) ) → ( ( ( ( 𝐴 ↑ ( ( 𝑛 − 1 ) / 2 ) ) + 1 ) mod 𝑛 ) − 1 ) ∈ 𝑍 ) |
39 |
32 37 38
|
syl2anc |
⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑛 ∈ ℙ ) ∧ ¬ 𝑛 = 2 ) → ( ( ( ( 𝐴 ↑ ( ( 𝑛 − 1 ) / 2 ) ) + 1 ) mod 𝑛 ) − 1 ) ∈ 𝑍 ) |
40 |
30 39
|
ifclda |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑛 ∈ ℙ ) → if ( 𝑛 = 2 , if ( 2 ∥ 𝐴 , 0 , if ( ( 𝐴 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) , ( ( ( ( 𝐴 ↑ ( ( 𝑛 − 1 ) / 2 ) ) + 1 ) mod 𝑛 ) − 1 ) ) ∈ 𝑍 ) |
41 |
|
simpr |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑛 ∈ ℙ ) → 𝑛 ∈ ℙ ) |
42 |
|
simpll2 |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑛 ∈ ℙ ) → 𝑁 ∈ ℤ ) |
43 |
|
simpll3 |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑛 ∈ ℙ ) → 𝑁 ≠ 0 ) |
44 |
|
pczcl |
⊢ ( ( 𝑛 ∈ ℙ ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → ( 𝑛 pCnt 𝑁 ) ∈ ℕ0 ) |
45 |
41 42 43 44
|
syl12anc |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑛 ∈ ℙ ) → ( 𝑛 pCnt 𝑁 ) ∈ ℕ0 ) |
46 |
2
|
ssrab3 |
⊢ 𝑍 ⊆ ℤ |
47 |
|
zsscn |
⊢ ℤ ⊆ ℂ |
48 |
46 47
|
sstri |
⊢ 𝑍 ⊆ ℂ |
49 |
2
|
lgslem3 |
⊢ ( ( 𝑎 ∈ 𝑍 ∧ 𝑏 ∈ 𝑍 ) → ( 𝑎 · 𝑏 ) ∈ 𝑍 ) |
50 |
48 49 18
|
expcllem |
⊢ ( ( if ( 𝑛 = 2 , if ( 2 ∥ 𝐴 , 0 , if ( ( 𝐴 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) , ( ( ( ( 𝐴 ↑ ( ( 𝑛 − 1 ) / 2 ) ) + 1 ) mod 𝑛 ) − 1 ) ) ∈ 𝑍 ∧ ( 𝑛 pCnt 𝑁 ) ∈ ℕ0 ) → ( if ( 𝑛 = 2 , if ( 2 ∥ 𝐴 , 0 , if ( ( 𝐴 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) , ( ( ( ( 𝐴 ↑ ( ( 𝑛 − 1 ) / 2 ) ) + 1 ) mod 𝑛 ) − 1 ) ) ↑ ( 𝑛 pCnt 𝑁 ) ) ∈ 𝑍 ) |
51 |
40 45 50
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑛 ∈ ℙ ) → ( if ( 𝑛 = 2 , if ( 2 ∥ 𝐴 , 0 , if ( ( 𝐴 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) , ( ( ( ( 𝐴 ↑ ( ( 𝑛 − 1 ) / 2 ) ) + 1 ) mod 𝑛 ) − 1 ) ) ↑ ( 𝑛 pCnt 𝑁 ) ) ∈ 𝑍 ) |
52 |
18
|
a1i |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ∧ 𝑛 ∈ ℕ ) ∧ ¬ 𝑛 ∈ ℙ ) → 1 ∈ 𝑍 ) |
53 |
51 52
|
ifclda |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ∧ 𝑛 ∈ ℕ ) → if ( 𝑛 ∈ ℙ , ( if ( 𝑛 = 2 , if ( 2 ∥ 𝐴 , 0 , if ( ( 𝐴 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) , ( ( ( ( 𝐴 ↑ ( ( 𝑛 − 1 ) / 2 ) ) + 1 ) mod 𝑛 ) − 1 ) ) ↑ ( 𝑛 pCnt 𝑁 ) ) , 1 ) ∈ 𝑍 ) |
54 |
53 1
|
fmptd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) → 𝐹 : ℕ ⟶ 𝑍 ) |