Step |
Hyp |
Ref |
Expression |
1 |
|
lgsval.1 |
⊢ 𝐹 = ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ ℙ , ( if ( 𝑛 = 2 , if ( 2 ∥ 𝐴 , 0 , if ( ( 𝐴 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) , ( ( ( ( 𝐴 ↑ ( ( 𝑛 − 1 ) / 2 ) ) + 1 ) mod 𝑛 ) − 1 ) ) ↑ ( 𝑛 pCnt 𝑁 ) ) , 1 ) ) |
2 |
|
eqid |
⊢ { 𝑥 ∈ ℤ ∣ ( abs ‘ 𝑥 ) ≤ 1 } = { 𝑥 ∈ ℤ ∣ ( abs ‘ 𝑥 ) ≤ 1 } |
3 |
1 2
|
lgsfcl2 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) → 𝐹 : ℕ ⟶ { 𝑥 ∈ ℤ ∣ ( abs ‘ 𝑥 ) ≤ 1 } ) |
4 |
3
|
ffvelrnda |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ∧ 𝑀 ∈ ℕ ) → ( 𝐹 ‘ 𝑀 ) ∈ { 𝑥 ∈ ℤ ∣ ( abs ‘ 𝑥 ) ≤ 1 } ) |
5 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝐹 ‘ 𝑀 ) → ( abs ‘ 𝑥 ) = ( abs ‘ ( 𝐹 ‘ 𝑀 ) ) ) |
6 |
5
|
breq1d |
⊢ ( 𝑥 = ( 𝐹 ‘ 𝑀 ) → ( ( abs ‘ 𝑥 ) ≤ 1 ↔ ( abs ‘ ( 𝐹 ‘ 𝑀 ) ) ≤ 1 ) ) |
7 |
6
|
elrab |
⊢ ( ( 𝐹 ‘ 𝑀 ) ∈ { 𝑥 ∈ ℤ ∣ ( abs ‘ 𝑥 ) ≤ 1 } ↔ ( ( 𝐹 ‘ 𝑀 ) ∈ ℤ ∧ ( abs ‘ ( 𝐹 ‘ 𝑀 ) ) ≤ 1 ) ) |
8 |
7
|
simprbi |
⊢ ( ( 𝐹 ‘ 𝑀 ) ∈ { 𝑥 ∈ ℤ ∣ ( abs ‘ 𝑥 ) ≤ 1 } → ( abs ‘ ( 𝐹 ‘ 𝑀 ) ) ≤ 1 ) |
9 |
4 8
|
syl |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ∧ 𝑀 ∈ ℕ ) → ( abs ‘ ( 𝐹 ‘ 𝑀 ) ) ≤ 1 ) |