| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lgsval.1 | ⊢ 𝐹  =  ( 𝑛  ∈  ℕ  ↦  if ( 𝑛  ∈  ℙ ,  ( if ( 𝑛  =  2 ,  if ( 2  ∥  𝐴 ,  0 ,  if ( ( 𝐴  mod  8 )  ∈  { 1 ,  7 } ,  1 ,  - 1 ) ) ,  ( ( ( ( 𝐴 ↑ ( ( 𝑛  −  1 )  /  2 ) )  +  1 )  mod  𝑛 )  −  1 ) ) ↑ ( 𝑛  pCnt  𝑁 ) ) ,  1 ) ) | 
						
							| 2 |  | eqid | ⊢ { 𝑥  ∈  ℤ  ∣  ( abs ‘ 𝑥 )  ≤  1 }  =  { 𝑥  ∈  ℤ  ∣  ( abs ‘ 𝑥 )  ≤  1 } | 
						
							| 3 | 1 2 | lgsfcl2 | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝑁  ≠  0 )  →  𝐹 : ℕ ⟶ { 𝑥  ∈  ℤ  ∣  ( abs ‘ 𝑥 )  ≤  1 } ) | 
						
							| 4 | 3 | ffvelcdmda | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝑁  ≠  0 )  ∧  𝑀  ∈  ℕ )  →  ( 𝐹 ‘ 𝑀 )  ∈  { 𝑥  ∈  ℤ  ∣  ( abs ‘ 𝑥 )  ≤  1 } ) | 
						
							| 5 |  | fveq2 | ⊢ ( 𝑥  =  ( 𝐹 ‘ 𝑀 )  →  ( abs ‘ 𝑥 )  =  ( abs ‘ ( 𝐹 ‘ 𝑀 ) ) ) | 
						
							| 6 | 5 | breq1d | ⊢ ( 𝑥  =  ( 𝐹 ‘ 𝑀 )  →  ( ( abs ‘ 𝑥 )  ≤  1  ↔  ( abs ‘ ( 𝐹 ‘ 𝑀 ) )  ≤  1 ) ) | 
						
							| 7 | 6 | elrab | ⊢ ( ( 𝐹 ‘ 𝑀 )  ∈  { 𝑥  ∈  ℤ  ∣  ( abs ‘ 𝑥 )  ≤  1 }  ↔  ( ( 𝐹 ‘ 𝑀 )  ∈  ℤ  ∧  ( abs ‘ ( 𝐹 ‘ 𝑀 ) )  ≤  1 ) ) | 
						
							| 8 | 7 | simprbi | ⊢ ( ( 𝐹 ‘ 𝑀 )  ∈  { 𝑥  ∈  ℤ  ∣  ( abs ‘ 𝑥 )  ≤  1 }  →  ( abs ‘ ( 𝐹 ‘ 𝑀 ) )  ≤  1 ) | 
						
							| 9 | 4 8 | syl | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝑁  ≠  0 )  ∧  𝑀  ∈  ℕ )  →  ( abs ‘ ( 𝐹 ‘ 𝑀 ) )  ≤  1 ) |