| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid | ⊢ { 𝑥  ∈  ℤ  ∣  ( abs ‘ 𝑥 )  ≤  1 }  =  { 𝑥  ∈  ℤ  ∣  ( abs ‘ 𝑥 )  ≤  1 } | 
						
							| 2 | 1 | lgscl2 | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝐴  /L  𝑁 )  ∈  { 𝑥  ∈  ℤ  ∣  ( abs ‘ 𝑥 )  ≤  1 } ) | 
						
							| 3 |  | fveq2 | ⊢ ( 𝑥  =  ( 𝐴  /L  𝑁 )  →  ( abs ‘ 𝑥 )  =  ( abs ‘ ( 𝐴  /L  𝑁 ) ) ) | 
						
							| 4 | 3 | breq1d | ⊢ ( 𝑥  =  ( 𝐴  /L  𝑁 )  →  ( ( abs ‘ 𝑥 )  ≤  1  ↔  ( abs ‘ ( 𝐴  /L  𝑁 ) )  ≤  1 ) ) | 
						
							| 5 | 4 | elrab | ⊢ ( ( 𝐴  /L  𝑁 )  ∈  { 𝑥  ∈  ℤ  ∣  ( abs ‘ 𝑥 )  ≤  1 }  ↔  ( ( 𝐴  /L  𝑁 )  ∈  ℤ  ∧  ( abs ‘ ( 𝐴  /L  𝑁 ) )  ≤  1 ) ) | 
						
							| 6 | 5 | simprbi | ⊢ ( ( 𝐴  /L  𝑁 )  ∈  { 𝑥  ∈  ℤ  ∣  ( abs ‘ 𝑥 )  ≤  1 }  →  ( abs ‘ ( 𝐴  /L  𝑁 ) )  ≤  1 ) | 
						
							| 7 | 2 6 | syl | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( abs ‘ ( 𝐴  /L  𝑁 ) )  ≤  1 ) |