| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lgslem2.z | ⊢ 𝑍  =  { 𝑥  ∈  ℤ  ∣  ( abs ‘ 𝑥 )  ≤  1 } | 
						
							| 2 |  | neg1z | ⊢ - 1  ∈  ℤ | 
						
							| 3 |  | 1le1 | ⊢ 1  ≤  1 | 
						
							| 4 |  | fveq2 | ⊢ ( 𝑥  =  - 1  →  ( abs ‘ 𝑥 )  =  ( abs ‘ - 1 ) ) | 
						
							| 5 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 6 | 5 | absnegi | ⊢ ( abs ‘ - 1 )  =  ( abs ‘ 1 ) | 
						
							| 7 |  | abs1 | ⊢ ( abs ‘ 1 )  =  1 | 
						
							| 8 | 6 7 | eqtri | ⊢ ( abs ‘ - 1 )  =  1 | 
						
							| 9 | 4 8 | eqtrdi | ⊢ ( 𝑥  =  - 1  →  ( abs ‘ 𝑥 )  =  1 ) | 
						
							| 10 | 9 | breq1d | ⊢ ( 𝑥  =  - 1  →  ( ( abs ‘ 𝑥 )  ≤  1  ↔  1  ≤  1 ) ) | 
						
							| 11 | 10 1 | elrab2 | ⊢ ( - 1  ∈  𝑍  ↔  ( - 1  ∈  ℤ  ∧  1  ≤  1 ) ) | 
						
							| 12 | 2 3 11 | mpbir2an | ⊢ - 1  ∈  𝑍 | 
						
							| 13 |  | 0z | ⊢ 0  ∈  ℤ | 
						
							| 14 |  | 0le1 | ⊢ 0  ≤  1 | 
						
							| 15 |  | fveq2 | ⊢ ( 𝑥  =  0  →  ( abs ‘ 𝑥 )  =  ( abs ‘ 0 ) ) | 
						
							| 16 |  | abs0 | ⊢ ( abs ‘ 0 )  =  0 | 
						
							| 17 | 15 16 | eqtrdi | ⊢ ( 𝑥  =  0  →  ( abs ‘ 𝑥 )  =  0 ) | 
						
							| 18 | 17 | breq1d | ⊢ ( 𝑥  =  0  →  ( ( abs ‘ 𝑥 )  ≤  1  ↔  0  ≤  1 ) ) | 
						
							| 19 | 18 1 | elrab2 | ⊢ ( 0  ∈  𝑍  ↔  ( 0  ∈  ℤ  ∧  0  ≤  1 ) ) | 
						
							| 20 | 13 14 19 | mpbir2an | ⊢ 0  ∈  𝑍 | 
						
							| 21 |  | 1z | ⊢ 1  ∈  ℤ | 
						
							| 22 |  | fveq2 | ⊢ ( 𝑥  =  1  →  ( abs ‘ 𝑥 )  =  ( abs ‘ 1 ) ) | 
						
							| 23 | 22 7 | eqtrdi | ⊢ ( 𝑥  =  1  →  ( abs ‘ 𝑥 )  =  1 ) | 
						
							| 24 | 23 | breq1d | ⊢ ( 𝑥  =  1  →  ( ( abs ‘ 𝑥 )  ≤  1  ↔  1  ≤  1 ) ) | 
						
							| 25 | 24 1 | elrab2 | ⊢ ( 1  ∈  𝑍  ↔  ( 1  ∈  ℤ  ∧  1  ≤  1 ) ) | 
						
							| 26 | 21 3 25 | mpbir2an | ⊢ 1  ∈  𝑍 | 
						
							| 27 | 12 20 26 | 3pm3.2i | ⊢ ( - 1  ∈  𝑍  ∧  0  ∈  𝑍  ∧  1  ∈  𝑍 ) |