| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							lgslem2.z | 
							⊢ 𝑍  =  { 𝑥  ∈  ℤ  ∣  ( abs ‘ 𝑥 )  ≤  1 }  | 
						
						
							| 2 | 
							
								
							 | 
							neg1z | 
							⊢ - 1  ∈  ℤ  | 
						
						
							| 3 | 
							
								
							 | 
							1le1 | 
							⊢ 1  ≤  1  | 
						
						
							| 4 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑥  =  - 1  →  ( abs ‘ 𝑥 )  =  ( abs ‘ - 1 ) )  | 
						
						
							| 5 | 
							
								
							 | 
							ax-1cn | 
							⊢ 1  ∈  ℂ  | 
						
						
							| 6 | 
							
								5
							 | 
							absnegi | 
							⊢ ( abs ‘ - 1 )  =  ( abs ‘ 1 )  | 
						
						
							| 7 | 
							
								
							 | 
							abs1 | 
							⊢ ( abs ‘ 1 )  =  1  | 
						
						
							| 8 | 
							
								6 7
							 | 
							eqtri | 
							⊢ ( abs ‘ - 1 )  =  1  | 
						
						
							| 9 | 
							
								4 8
							 | 
							eqtrdi | 
							⊢ ( 𝑥  =  - 1  →  ( abs ‘ 𝑥 )  =  1 )  | 
						
						
							| 10 | 
							
								9
							 | 
							breq1d | 
							⊢ ( 𝑥  =  - 1  →  ( ( abs ‘ 𝑥 )  ≤  1  ↔  1  ≤  1 ) )  | 
						
						
							| 11 | 
							
								10 1
							 | 
							elrab2 | 
							⊢ ( - 1  ∈  𝑍  ↔  ( - 1  ∈  ℤ  ∧  1  ≤  1 ) )  | 
						
						
							| 12 | 
							
								2 3 11
							 | 
							mpbir2an | 
							⊢ - 1  ∈  𝑍  | 
						
						
							| 13 | 
							
								
							 | 
							0z | 
							⊢ 0  ∈  ℤ  | 
						
						
							| 14 | 
							
								
							 | 
							0le1 | 
							⊢ 0  ≤  1  | 
						
						
							| 15 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑥  =  0  →  ( abs ‘ 𝑥 )  =  ( abs ‘ 0 ) )  | 
						
						
							| 16 | 
							
								
							 | 
							abs0 | 
							⊢ ( abs ‘ 0 )  =  0  | 
						
						
							| 17 | 
							
								15 16
							 | 
							eqtrdi | 
							⊢ ( 𝑥  =  0  →  ( abs ‘ 𝑥 )  =  0 )  | 
						
						
							| 18 | 
							
								17
							 | 
							breq1d | 
							⊢ ( 𝑥  =  0  →  ( ( abs ‘ 𝑥 )  ≤  1  ↔  0  ≤  1 ) )  | 
						
						
							| 19 | 
							
								18 1
							 | 
							elrab2 | 
							⊢ ( 0  ∈  𝑍  ↔  ( 0  ∈  ℤ  ∧  0  ≤  1 ) )  | 
						
						
							| 20 | 
							
								13 14 19
							 | 
							mpbir2an | 
							⊢ 0  ∈  𝑍  | 
						
						
							| 21 | 
							
								
							 | 
							1z | 
							⊢ 1  ∈  ℤ  | 
						
						
							| 22 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑥  =  1  →  ( abs ‘ 𝑥 )  =  ( abs ‘ 1 ) )  | 
						
						
							| 23 | 
							
								22 7
							 | 
							eqtrdi | 
							⊢ ( 𝑥  =  1  →  ( abs ‘ 𝑥 )  =  1 )  | 
						
						
							| 24 | 
							
								23
							 | 
							breq1d | 
							⊢ ( 𝑥  =  1  →  ( ( abs ‘ 𝑥 )  ≤  1  ↔  1  ≤  1 ) )  | 
						
						
							| 25 | 
							
								24 1
							 | 
							elrab2 | 
							⊢ ( 1  ∈  𝑍  ↔  ( 1  ∈  ℤ  ∧  1  ≤  1 ) )  | 
						
						
							| 26 | 
							
								21 3 25
							 | 
							mpbir2an | 
							⊢ 1  ∈  𝑍  | 
						
						
							| 27 | 
							
								12 20 26
							 | 
							3pm3.2i | 
							⊢ ( - 1  ∈  𝑍  ∧  0  ∈  𝑍  ∧  1  ∈  𝑍 )  |