Metamath Proof Explorer


Theorem lgslem2

Description: The set Z of all integers with absolute value at most 1 contains { -u 1 , 0 , 1 } . (Contributed by Mario Carneiro, 4-Feb-2015)

Ref Expression
Hypothesis lgslem2.z 𝑍 = { 𝑥 ∈ ℤ ∣ ( abs ‘ 𝑥 ) ≤ 1 }
Assertion lgslem2 ( - 1 ∈ 𝑍 ∧ 0 ∈ 𝑍 ∧ 1 ∈ 𝑍 )

Proof

Step Hyp Ref Expression
1 lgslem2.z 𝑍 = { 𝑥 ∈ ℤ ∣ ( abs ‘ 𝑥 ) ≤ 1 }
2 neg1z - 1 ∈ ℤ
3 1le1 1 ≤ 1
4 fveq2 ( 𝑥 = - 1 → ( abs ‘ 𝑥 ) = ( abs ‘ - 1 ) )
5 ax-1cn 1 ∈ ℂ
6 5 absnegi ( abs ‘ - 1 ) = ( abs ‘ 1 )
7 abs1 ( abs ‘ 1 ) = 1
8 6 7 eqtri ( abs ‘ - 1 ) = 1
9 4 8 eqtrdi ( 𝑥 = - 1 → ( abs ‘ 𝑥 ) = 1 )
10 9 breq1d ( 𝑥 = - 1 → ( ( abs ‘ 𝑥 ) ≤ 1 ↔ 1 ≤ 1 ) )
11 10 1 elrab2 ( - 1 ∈ 𝑍 ↔ ( - 1 ∈ ℤ ∧ 1 ≤ 1 ) )
12 2 3 11 mpbir2an - 1 ∈ 𝑍
13 0z 0 ∈ ℤ
14 0le1 0 ≤ 1
15 fveq2 ( 𝑥 = 0 → ( abs ‘ 𝑥 ) = ( abs ‘ 0 ) )
16 abs0 ( abs ‘ 0 ) = 0
17 15 16 eqtrdi ( 𝑥 = 0 → ( abs ‘ 𝑥 ) = 0 )
18 17 breq1d ( 𝑥 = 0 → ( ( abs ‘ 𝑥 ) ≤ 1 ↔ 0 ≤ 1 ) )
19 18 1 elrab2 ( 0 ∈ 𝑍 ↔ ( 0 ∈ ℤ ∧ 0 ≤ 1 ) )
20 13 14 19 mpbir2an 0 ∈ 𝑍
21 1z 1 ∈ ℤ
22 fveq2 ( 𝑥 = 1 → ( abs ‘ 𝑥 ) = ( abs ‘ 1 ) )
23 22 7 eqtrdi ( 𝑥 = 1 → ( abs ‘ 𝑥 ) = 1 )
24 23 breq1d ( 𝑥 = 1 → ( ( abs ‘ 𝑥 ) ≤ 1 ↔ 1 ≤ 1 ) )
25 24 1 elrab2 ( 1 ∈ 𝑍 ↔ ( 1 ∈ ℤ ∧ 1 ≤ 1 ) )
26 21 3 25 mpbir2an 1 ∈ 𝑍
27 12 20 26 3pm3.2i ( - 1 ∈ 𝑍 ∧ 0 ∈ 𝑍 ∧ 1 ∈ 𝑍 )