| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lgslem2.z | ⊢ 𝑍  =  { 𝑥  ∈  ℤ  ∣  ( abs ‘ 𝑥 )  ≤  1 } | 
						
							| 2 |  | zmulcl | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  →  ( 𝐴  ·  𝐵 )  ∈  ℤ ) | 
						
							| 3 | 2 | ad2ant2r | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  ( abs ‘ 𝐴 )  ≤  1 )  ∧  ( 𝐵  ∈  ℤ  ∧  ( abs ‘ 𝐵 )  ≤  1 ) )  →  ( 𝐴  ·  𝐵 )  ∈  ℤ ) | 
						
							| 4 |  | zcn | ⊢ ( 𝐴  ∈  ℤ  →  𝐴  ∈  ℂ ) | 
						
							| 5 |  | zcn | ⊢ ( 𝐵  ∈  ℤ  →  𝐵  ∈  ℂ ) | 
						
							| 6 |  | absmul | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( abs ‘ ( 𝐴  ·  𝐵 ) )  =  ( ( abs ‘ 𝐴 )  ·  ( abs ‘ 𝐵 ) ) ) | 
						
							| 7 | 4 5 6 | syl2an | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  →  ( abs ‘ ( 𝐴  ·  𝐵 ) )  =  ( ( abs ‘ 𝐴 )  ·  ( abs ‘ 𝐵 ) ) ) | 
						
							| 8 | 7 | ad2ant2r | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  ( abs ‘ 𝐴 )  ≤  1 )  ∧  ( 𝐵  ∈  ℤ  ∧  ( abs ‘ 𝐵 )  ≤  1 ) )  →  ( abs ‘ ( 𝐴  ·  𝐵 ) )  =  ( ( abs ‘ 𝐴 )  ·  ( abs ‘ 𝐵 ) ) ) | 
						
							| 9 |  | abscl | ⊢ ( 𝐴  ∈  ℂ  →  ( abs ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 10 |  | absge0 | ⊢ ( 𝐴  ∈  ℂ  →  0  ≤  ( abs ‘ 𝐴 ) ) | 
						
							| 11 | 9 10 | jca | ⊢ ( 𝐴  ∈  ℂ  →  ( ( abs ‘ 𝐴 )  ∈  ℝ  ∧  0  ≤  ( abs ‘ 𝐴 ) ) ) | 
						
							| 12 | 4 11 | syl | ⊢ ( 𝐴  ∈  ℤ  →  ( ( abs ‘ 𝐴 )  ∈  ℝ  ∧  0  ≤  ( abs ‘ 𝐴 ) ) ) | 
						
							| 13 | 12 | adantr | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  →  ( ( abs ‘ 𝐴 )  ∈  ℝ  ∧  0  ≤  ( abs ‘ 𝐴 ) ) ) | 
						
							| 14 |  | 1red | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  →  1  ∈  ℝ ) | 
						
							| 15 |  | abscl | ⊢ ( 𝐵  ∈  ℂ  →  ( abs ‘ 𝐵 )  ∈  ℝ ) | 
						
							| 16 |  | absge0 | ⊢ ( 𝐵  ∈  ℂ  →  0  ≤  ( abs ‘ 𝐵 ) ) | 
						
							| 17 | 15 16 | jca | ⊢ ( 𝐵  ∈  ℂ  →  ( ( abs ‘ 𝐵 )  ∈  ℝ  ∧  0  ≤  ( abs ‘ 𝐵 ) ) ) | 
						
							| 18 | 5 17 | syl | ⊢ ( 𝐵  ∈  ℤ  →  ( ( abs ‘ 𝐵 )  ∈  ℝ  ∧  0  ≤  ( abs ‘ 𝐵 ) ) ) | 
						
							| 19 | 18 | adantl | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  →  ( ( abs ‘ 𝐵 )  ∈  ℝ  ∧  0  ≤  ( abs ‘ 𝐵 ) ) ) | 
						
							| 20 |  | lemul12a | ⊢ ( ( ( ( ( abs ‘ 𝐴 )  ∈  ℝ  ∧  0  ≤  ( abs ‘ 𝐴 ) )  ∧  1  ∈  ℝ )  ∧  ( ( ( abs ‘ 𝐵 )  ∈  ℝ  ∧  0  ≤  ( abs ‘ 𝐵 ) )  ∧  1  ∈  ℝ ) )  →  ( ( ( abs ‘ 𝐴 )  ≤  1  ∧  ( abs ‘ 𝐵 )  ≤  1 )  →  ( ( abs ‘ 𝐴 )  ·  ( abs ‘ 𝐵 ) )  ≤  ( 1  ·  1 ) ) ) | 
						
							| 21 | 13 14 19 14 20 | syl22anc | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  →  ( ( ( abs ‘ 𝐴 )  ≤  1  ∧  ( abs ‘ 𝐵 )  ≤  1 )  →  ( ( abs ‘ 𝐴 )  ·  ( abs ‘ 𝐵 ) )  ≤  ( 1  ·  1 ) ) ) | 
						
							| 22 | 21 | imp | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  ( ( abs ‘ 𝐴 )  ≤  1  ∧  ( abs ‘ 𝐵 )  ≤  1 ) )  →  ( ( abs ‘ 𝐴 )  ·  ( abs ‘ 𝐵 ) )  ≤  ( 1  ·  1 ) ) | 
						
							| 23 | 22 | an4s | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  ( abs ‘ 𝐴 )  ≤  1 )  ∧  ( 𝐵  ∈  ℤ  ∧  ( abs ‘ 𝐵 )  ≤  1 ) )  →  ( ( abs ‘ 𝐴 )  ·  ( abs ‘ 𝐵 ) )  ≤  ( 1  ·  1 ) ) | 
						
							| 24 |  | 1t1e1 | ⊢ ( 1  ·  1 )  =  1 | 
						
							| 25 | 23 24 | breqtrdi | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  ( abs ‘ 𝐴 )  ≤  1 )  ∧  ( 𝐵  ∈  ℤ  ∧  ( abs ‘ 𝐵 )  ≤  1 ) )  →  ( ( abs ‘ 𝐴 )  ·  ( abs ‘ 𝐵 ) )  ≤  1 ) | 
						
							| 26 | 8 25 | eqbrtrd | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  ( abs ‘ 𝐴 )  ≤  1 )  ∧  ( 𝐵  ∈  ℤ  ∧  ( abs ‘ 𝐵 )  ≤  1 ) )  →  ( abs ‘ ( 𝐴  ·  𝐵 ) )  ≤  1 ) | 
						
							| 27 | 3 26 | jca | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  ( abs ‘ 𝐴 )  ≤  1 )  ∧  ( 𝐵  ∈  ℤ  ∧  ( abs ‘ 𝐵 )  ≤  1 ) )  →  ( ( 𝐴  ·  𝐵 )  ∈  ℤ  ∧  ( abs ‘ ( 𝐴  ·  𝐵 ) )  ≤  1 ) ) | 
						
							| 28 |  | fveq2 | ⊢ ( 𝑥  =  𝐴  →  ( abs ‘ 𝑥 )  =  ( abs ‘ 𝐴 ) ) | 
						
							| 29 | 28 | breq1d | ⊢ ( 𝑥  =  𝐴  →  ( ( abs ‘ 𝑥 )  ≤  1  ↔  ( abs ‘ 𝐴 )  ≤  1 ) ) | 
						
							| 30 | 29 1 | elrab2 | ⊢ ( 𝐴  ∈  𝑍  ↔  ( 𝐴  ∈  ℤ  ∧  ( abs ‘ 𝐴 )  ≤  1 ) ) | 
						
							| 31 |  | fveq2 | ⊢ ( 𝑥  =  𝐵  →  ( abs ‘ 𝑥 )  =  ( abs ‘ 𝐵 ) ) | 
						
							| 32 | 31 | breq1d | ⊢ ( 𝑥  =  𝐵  →  ( ( abs ‘ 𝑥 )  ≤  1  ↔  ( abs ‘ 𝐵 )  ≤  1 ) ) | 
						
							| 33 | 32 1 | elrab2 | ⊢ ( 𝐵  ∈  𝑍  ↔  ( 𝐵  ∈  ℤ  ∧  ( abs ‘ 𝐵 )  ≤  1 ) ) | 
						
							| 34 | 30 33 | anbi12i | ⊢ ( ( 𝐴  ∈  𝑍  ∧  𝐵  ∈  𝑍 )  ↔  ( ( 𝐴  ∈  ℤ  ∧  ( abs ‘ 𝐴 )  ≤  1 )  ∧  ( 𝐵  ∈  ℤ  ∧  ( abs ‘ 𝐵 )  ≤  1 ) ) ) | 
						
							| 35 |  | fveq2 | ⊢ ( 𝑥  =  ( 𝐴  ·  𝐵 )  →  ( abs ‘ 𝑥 )  =  ( abs ‘ ( 𝐴  ·  𝐵 ) ) ) | 
						
							| 36 | 35 | breq1d | ⊢ ( 𝑥  =  ( 𝐴  ·  𝐵 )  →  ( ( abs ‘ 𝑥 )  ≤  1  ↔  ( abs ‘ ( 𝐴  ·  𝐵 ) )  ≤  1 ) ) | 
						
							| 37 | 36 1 | elrab2 | ⊢ ( ( 𝐴  ·  𝐵 )  ∈  𝑍  ↔  ( ( 𝐴  ·  𝐵 )  ∈  ℤ  ∧  ( abs ‘ ( 𝐴  ·  𝐵 ) )  ≤  1 ) ) | 
						
							| 38 | 27 34 37 | 3imtr4i | ⊢ ( ( 𝐴  ∈  𝑍  ∧  𝐵  ∈  𝑍 )  →  ( 𝐴  ·  𝐵 )  ∈  𝑍 ) |