Step |
Hyp |
Ref |
Expression |
1 |
|
lgslem2.z |
⊢ 𝑍 = { 𝑥 ∈ ℤ ∣ ( abs ‘ 𝑥 ) ≤ 1 } |
2 |
|
zmulcl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 · 𝐵 ) ∈ ℤ ) |
3 |
2
|
ad2ant2r |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ ( abs ‘ 𝐴 ) ≤ 1 ) ∧ ( 𝐵 ∈ ℤ ∧ ( abs ‘ 𝐵 ) ≤ 1 ) ) → ( 𝐴 · 𝐵 ) ∈ ℤ ) |
4 |
|
zcn |
⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℂ ) |
5 |
|
zcn |
⊢ ( 𝐵 ∈ ℤ → 𝐵 ∈ ℂ ) |
6 |
|
absmul |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( abs ‘ ( 𝐴 · 𝐵 ) ) = ( ( abs ‘ 𝐴 ) · ( abs ‘ 𝐵 ) ) ) |
7 |
4 5 6
|
syl2an |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( abs ‘ ( 𝐴 · 𝐵 ) ) = ( ( abs ‘ 𝐴 ) · ( abs ‘ 𝐵 ) ) ) |
8 |
7
|
ad2ant2r |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ ( abs ‘ 𝐴 ) ≤ 1 ) ∧ ( 𝐵 ∈ ℤ ∧ ( abs ‘ 𝐵 ) ≤ 1 ) ) → ( abs ‘ ( 𝐴 · 𝐵 ) ) = ( ( abs ‘ 𝐴 ) · ( abs ‘ 𝐵 ) ) ) |
9 |
|
abscl |
⊢ ( 𝐴 ∈ ℂ → ( abs ‘ 𝐴 ) ∈ ℝ ) |
10 |
|
absge0 |
⊢ ( 𝐴 ∈ ℂ → 0 ≤ ( abs ‘ 𝐴 ) ) |
11 |
9 10
|
jca |
⊢ ( 𝐴 ∈ ℂ → ( ( abs ‘ 𝐴 ) ∈ ℝ ∧ 0 ≤ ( abs ‘ 𝐴 ) ) ) |
12 |
4 11
|
syl |
⊢ ( 𝐴 ∈ ℤ → ( ( abs ‘ 𝐴 ) ∈ ℝ ∧ 0 ≤ ( abs ‘ 𝐴 ) ) ) |
13 |
12
|
adantr |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( abs ‘ 𝐴 ) ∈ ℝ ∧ 0 ≤ ( abs ‘ 𝐴 ) ) ) |
14 |
|
1red |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → 1 ∈ ℝ ) |
15 |
|
abscl |
⊢ ( 𝐵 ∈ ℂ → ( abs ‘ 𝐵 ) ∈ ℝ ) |
16 |
|
absge0 |
⊢ ( 𝐵 ∈ ℂ → 0 ≤ ( abs ‘ 𝐵 ) ) |
17 |
15 16
|
jca |
⊢ ( 𝐵 ∈ ℂ → ( ( abs ‘ 𝐵 ) ∈ ℝ ∧ 0 ≤ ( abs ‘ 𝐵 ) ) ) |
18 |
5 17
|
syl |
⊢ ( 𝐵 ∈ ℤ → ( ( abs ‘ 𝐵 ) ∈ ℝ ∧ 0 ≤ ( abs ‘ 𝐵 ) ) ) |
19 |
18
|
adantl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( abs ‘ 𝐵 ) ∈ ℝ ∧ 0 ≤ ( abs ‘ 𝐵 ) ) ) |
20 |
|
lemul12a |
⊢ ( ( ( ( ( abs ‘ 𝐴 ) ∈ ℝ ∧ 0 ≤ ( abs ‘ 𝐴 ) ) ∧ 1 ∈ ℝ ) ∧ ( ( ( abs ‘ 𝐵 ) ∈ ℝ ∧ 0 ≤ ( abs ‘ 𝐵 ) ) ∧ 1 ∈ ℝ ) ) → ( ( ( abs ‘ 𝐴 ) ≤ 1 ∧ ( abs ‘ 𝐵 ) ≤ 1 ) → ( ( abs ‘ 𝐴 ) · ( abs ‘ 𝐵 ) ) ≤ ( 1 · 1 ) ) ) |
21 |
13 14 19 14 20
|
syl22anc |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( ( abs ‘ 𝐴 ) ≤ 1 ∧ ( abs ‘ 𝐵 ) ≤ 1 ) → ( ( abs ‘ 𝐴 ) · ( abs ‘ 𝐵 ) ) ≤ ( 1 · 1 ) ) ) |
22 |
21
|
imp |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( abs ‘ 𝐴 ) ≤ 1 ∧ ( abs ‘ 𝐵 ) ≤ 1 ) ) → ( ( abs ‘ 𝐴 ) · ( abs ‘ 𝐵 ) ) ≤ ( 1 · 1 ) ) |
23 |
22
|
an4s |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ ( abs ‘ 𝐴 ) ≤ 1 ) ∧ ( 𝐵 ∈ ℤ ∧ ( abs ‘ 𝐵 ) ≤ 1 ) ) → ( ( abs ‘ 𝐴 ) · ( abs ‘ 𝐵 ) ) ≤ ( 1 · 1 ) ) |
24 |
|
1t1e1 |
⊢ ( 1 · 1 ) = 1 |
25 |
23 24
|
breqtrdi |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ ( abs ‘ 𝐴 ) ≤ 1 ) ∧ ( 𝐵 ∈ ℤ ∧ ( abs ‘ 𝐵 ) ≤ 1 ) ) → ( ( abs ‘ 𝐴 ) · ( abs ‘ 𝐵 ) ) ≤ 1 ) |
26 |
8 25
|
eqbrtrd |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ ( abs ‘ 𝐴 ) ≤ 1 ) ∧ ( 𝐵 ∈ ℤ ∧ ( abs ‘ 𝐵 ) ≤ 1 ) ) → ( abs ‘ ( 𝐴 · 𝐵 ) ) ≤ 1 ) |
27 |
3 26
|
jca |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ ( abs ‘ 𝐴 ) ≤ 1 ) ∧ ( 𝐵 ∈ ℤ ∧ ( abs ‘ 𝐵 ) ≤ 1 ) ) → ( ( 𝐴 · 𝐵 ) ∈ ℤ ∧ ( abs ‘ ( 𝐴 · 𝐵 ) ) ≤ 1 ) ) |
28 |
|
fveq2 |
⊢ ( 𝑥 = 𝐴 → ( abs ‘ 𝑥 ) = ( abs ‘ 𝐴 ) ) |
29 |
28
|
breq1d |
⊢ ( 𝑥 = 𝐴 → ( ( abs ‘ 𝑥 ) ≤ 1 ↔ ( abs ‘ 𝐴 ) ≤ 1 ) ) |
30 |
29 1
|
elrab2 |
⊢ ( 𝐴 ∈ 𝑍 ↔ ( 𝐴 ∈ ℤ ∧ ( abs ‘ 𝐴 ) ≤ 1 ) ) |
31 |
|
fveq2 |
⊢ ( 𝑥 = 𝐵 → ( abs ‘ 𝑥 ) = ( abs ‘ 𝐵 ) ) |
32 |
31
|
breq1d |
⊢ ( 𝑥 = 𝐵 → ( ( abs ‘ 𝑥 ) ≤ 1 ↔ ( abs ‘ 𝐵 ) ≤ 1 ) ) |
33 |
32 1
|
elrab2 |
⊢ ( 𝐵 ∈ 𝑍 ↔ ( 𝐵 ∈ ℤ ∧ ( abs ‘ 𝐵 ) ≤ 1 ) ) |
34 |
30 33
|
anbi12i |
⊢ ( ( 𝐴 ∈ 𝑍 ∧ 𝐵 ∈ 𝑍 ) ↔ ( ( 𝐴 ∈ ℤ ∧ ( abs ‘ 𝐴 ) ≤ 1 ) ∧ ( 𝐵 ∈ ℤ ∧ ( abs ‘ 𝐵 ) ≤ 1 ) ) ) |
35 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝐴 · 𝐵 ) → ( abs ‘ 𝑥 ) = ( abs ‘ ( 𝐴 · 𝐵 ) ) ) |
36 |
35
|
breq1d |
⊢ ( 𝑥 = ( 𝐴 · 𝐵 ) → ( ( abs ‘ 𝑥 ) ≤ 1 ↔ ( abs ‘ ( 𝐴 · 𝐵 ) ) ≤ 1 ) ) |
37 |
36 1
|
elrab2 |
⊢ ( ( 𝐴 · 𝐵 ) ∈ 𝑍 ↔ ( ( 𝐴 · 𝐵 ) ∈ ℤ ∧ ( abs ‘ ( 𝐴 · 𝐵 ) ) ≤ 1 ) ) |
38 |
27 34 37
|
3imtr4i |
⊢ ( ( 𝐴 ∈ 𝑍 ∧ 𝐵 ∈ 𝑍 ) → ( 𝐴 · 𝐵 ) ∈ 𝑍 ) |