| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prmz | ⊢ ( 𝑃  ∈  ℙ  →  𝑃  ∈  ℤ ) | 
						
							| 2 |  | lgsne0 | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑃  ∈  ℤ )  →  ( ( 𝐴  /L  𝑃 )  ≠  0  ↔  ( 𝐴  gcd  𝑃 )  =  1 ) ) | 
						
							| 3 | 1 2 | sylan2 | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑃  ∈  ℙ )  →  ( ( 𝐴  /L  𝑃 )  ≠  0  ↔  ( 𝐴  gcd  𝑃 )  =  1 ) ) | 
						
							| 4 |  | coprm | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℤ )  →  ( ¬  𝑃  ∥  𝐴  ↔  ( 𝑃  gcd  𝐴 )  =  1 ) ) | 
						
							| 5 | 4 | ancoms | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑃  ∈  ℙ )  →  ( ¬  𝑃  ∥  𝐴  ↔  ( 𝑃  gcd  𝐴 )  =  1 ) ) | 
						
							| 6 | 1 | anim1i | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℤ )  →  ( 𝑃  ∈  ℤ  ∧  𝐴  ∈  ℤ ) ) | 
						
							| 7 | 6 | ancoms | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑃  ∈  ℙ )  →  ( 𝑃  ∈  ℤ  ∧  𝐴  ∈  ℤ ) ) | 
						
							| 8 |  | gcdcom | ⊢ ( ( 𝑃  ∈  ℤ  ∧  𝐴  ∈  ℤ )  →  ( 𝑃  gcd  𝐴 )  =  ( 𝐴  gcd  𝑃 ) ) | 
						
							| 9 | 7 8 | syl | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑃  ∈  ℙ )  →  ( 𝑃  gcd  𝐴 )  =  ( 𝐴  gcd  𝑃 ) ) | 
						
							| 10 | 9 | eqeq1d | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑃  ∈  ℙ )  →  ( ( 𝑃  gcd  𝐴 )  =  1  ↔  ( 𝐴  gcd  𝑃 )  =  1 ) ) | 
						
							| 11 | 5 10 | bitr2d | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑃  ∈  ℙ )  →  ( ( 𝐴  gcd  𝑃 )  =  1  ↔  ¬  𝑃  ∥  𝐴 ) ) | 
						
							| 12 |  | prmnn | ⊢ ( 𝑃  ∈  ℙ  →  𝑃  ∈  ℕ ) | 
						
							| 13 |  | dvdsval3 | ⊢ ( ( 𝑃  ∈  ℕ  ∧  𝐴  ∈  ℤ )  →  ( 𝑃  ∥  𝐴  ↔  ( 𝐴  mod  𝑃 )  =  0 ) ) | 
						
							| 14 | 12 13 | sylan | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℤ )  →  ( 𝑃  ∥  𝐴  ↔  ( 𝐴  mod  𝑃 )  =  0 ) ) | 
						
							| 15 | 14 | ancoms | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑃  ∈  ℙ )  →  ( 𝑃  ∥  𝐴  ↔  ( 𝐴  mod  𝑃 )  =  0 ) ) | 
						
							| 16 | 15 | notbid | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑃  ∈  ℙ )  →  ( ¬  𝑃  ∥  𝐴  ↔  ¬  ( 𝐴  mod  𝑃 )  =  0 ) ) | 
						
							| 17 | 3 11 16 | 3bitrd | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑃  ∈  ℙ )  →  ( ( 𝐴  /L  𝑃 )  ≠  0  ↔  ¬  ( 𝐴  mod  𝑃 )  =  0 ) ) | 
						
							| 18 | 17 | necon4abid | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑃  ∈  ℙ )  →  ( ( 𝐴  /L  𝑃 )  =  0  ↔  ( 𝐴  mod  𝑃 )  =  0 ) ) |