Step |
Hyp |
Ref |
Expression |
1 |
|
prmz |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℤ ) |
2 |
|
lgsne0 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → ( ( 𝐴 /L 𝑃 ) ≠ 0 ↔ ( 𝐴 gcd 𝑃 ) = 1 ) ) |
3 |
1 2
|
sylan2 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑃 ∈ ℙ ) → ( ( 𝐴 /L 𝑃 ) ≠ 0 ↔ ( 𝐴 gcd 𝑃 ) = 1 ) ) |
4 |
|
coprm |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ) → ( ¬ 𝑃 ∥ 𝐴 ↔ ( 𝑃 gcd 𝐴 ) = 1 ) ) |
5 |
4
|
ancoms |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑃 ∈ ℙ ) → ( ¬ 𝑃 ∥ 𝐴 ↔ ( 𝑃 gcd 𝐴 ) = 1 ) ) |
6 |
1
|
anim1i |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ) → ( 𝑃 ∈ ℤ ∧ 𝐴 ∈ ℤ ) ) |
7 |
6
|
ancoms |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑃 ∈ ℙ ) → ( 𝑃 ∈ ℤ ∧ 𝐴 ∈ ℤ ) ) |
8 |
|
gcdcom |
⊢ ( ( 𝑃 ∈ ℤ ∧ 𝐴 ∈ ℤ ) → ( 𝑃 gcd 𝐴 ) = ( 𝐴 gcd 𝑃 ) ) |
9 |
7 8
|
syl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑃 ∈ ℙ ) → ( 𝑃 gcd 𝐴 ) = ( 𝐴 gcd 𝑃 ) ) |
10 |
9
|
eqeq1d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑃 ∈ ℙ ) → ( ( 𝑃 gcd 𝐴 ) = 1 ↔ ( 𝐴 gcd 𝑃 ) = 1 ) ) |
11 |
5 10
|
bitr2d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑃 ∈ ℙ ) → ( ( 𝐴 gcd 𝑃 ) = 1 ↔ ¬ 𝑃 ∥ 𝐴 ) ) |
12 |
|
prmnn |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ ) |
13 |
|
dvdsval3 |
⊢ ( ( 𝑃 ∈ ℕ ∧ 𝐴 ∈ ℤ ) → ( 𝑃 ∥ 𝐴 ↔ ( 𝐴 mod 𝑃 ) = 0 ) ) |
14 |
12 13
|
sylan |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ) → ( 𝑃 ∥ 𝐴 ↔ ( 𝐴 mod 𝑃 ) = 0 ) ) |
15 |
14
|
ancoms |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑃 ∈ ℙ ) → ( 𝑃 ∥ 𝐴 ↔ ( 𝐴 mod 𝑃 ) = 0 ) ) |
16 |
15
|
notbid |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑃 ∈ ℙ ) → ( ¬ 𝑃 ∥ 𝐴 ↔ ¬ ( 𝐴 mod 𝑃 ) = 0 ) ) |
17 |
3 11 16
|
3bitrd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑃 ∈ ℙ ) → ( ( 𝐴 /L 𝑃 ) ≠ 0 ↔ ¬ ( 𝐴 mod 𝑃 ) = 0 ) ) |
18 |
17
|
necon4abid |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑃 ∈ ℙ ) → ( ( 𝐴 /L 𝑃 ) = 0 ↔ ( 𝐴 mod 𝑃 ) = 0 ) ) |