Step |
Hyp |
Ref |
Expression |
1 |
|
lgsqr.y |
⊢ 𝑌 = ( ℤ/nℤ ‘ 𝑃 ) |
2 |
|
lgsqr.s |
⊢ 𝑆 = ( Poly1 ‘ 𝑌 ) |
3 |
|
lgsqr.b |
⊢ 𝐵 = ( Base ‘ 𝑆 ) |
4 |
|
lgsqr.d |
⊢ 𝐷 = ( deg1 ‘ 𝑌 ) |
5 |
|
lgsqr.o |
⊢ 𝑂 = ( eval1 ‘ 𝑌 ) |
6 |
|
lgsqr.e |
⊢ ↑ = ( .g ‘ ( mulGrp ‘ 𝑆 ) ) |
7 |
|
lgsqr.x |
⊢ 𝑋 = ( var1 ‘ 𝑌 ) |
8 |
|
lgsqr.m |
⊢ − = ( -g ‘ 𝑆 ) |
9 |
|
lgsqr.u |
⊢ 1 = ( 1r ‘ 𝑆 ) |
10 |
|
lgsqr.t |
⊢ 𝑇 = ( ( ( ( 𝑃 − 1 ) / 2 ) ↑ 𝑋 ) − 1 ) |
11 |
|
lgsqr.l |
⊢ 𝐿 = ( ℤRHom ‘ 𝑌 ) |
12 |
|
lgsqr.1 |
⊢ ( 𝜑 → 𝑃 ∈ ( ℙ ∖ { 2 } ) ) |
13 |
|
lgsqr.g |
⊢ 𝐺 = ( 𝑦 ∈ ( 1 ... ( ( 𝑃 − 1 ) / 2 ) ) ↦ ( 𝐿 ‘ ( 𝑦 ↑ 2 ) ) ) |
14 |
|
lgsqr.3 |
⊢ ( 𝜑 → 𝐴 ∈ ℤ ) |
15 |
|
lgsqr.4 |
⊢ ( 𝜑 → ( 𝐴 /L 𝑃 ) = 1 ) |
16 |
1 2 3 4 5 6 7 8 9 10 11 12 13
|
lgsqrlem2 |
⊢ ( 𝜑 → 𝐺 : ( 1 ... ( ( 𝑃 − 1 ) / 2 ) ) –1-1→ ( ◡ ( 𝑂 ‘ 𝑇 ) “ { ( 0g ‘ 𝑌 ) } ) ) |
17 |
|
fvex |
⊢ ( 𝑂 ‘ 𝑇 ) ∈ V |
18 |
17
|
cnvex |
⊢ ◡ ( 𝑂 ‘ 𝑇 ) ∈ V |
19 |
18
|
imaex |
⊢ ( ◡ ( 𝑂 ‘ 𝑇 ) “ { ( 0g ‘ 𝑌 ) } ) ∈ V |
20 |
19
|
f1dom |
⊢ ( 𝐺 : ( 1 ... ( ( 𝑃 − 1 ) / 2 ) ) –1-1→ ( ◡ ( 𝑂 ‘ 𝑇 ) “ { ( 0g ‘ 𝑌 ) } ) → ( 1 ... ( ( 𝑃 − 1 ) / 2 ) ) ≼ ( ◡ ( 𝑂 ‘ 𝑇 ) “ { ( 0g ‘ 𝑌 ) } ) ) |
21 |
16 20
|
syl |
⊢ ( 𝜑 → ( 1 ... ( ( 𝑃 − 1 ) / 2 ) ) ≼ ( ◡ ( 𝑂 ‘ 𝑇 ) “ { ( 0g ‘ 𝑌 ) } ) ) |
22 |
|
eqid |
⊢ ( 0g ‘ 𝑌 ) = ( 0g ‘ 𝑌 ) |
23 |
|
eqid |
⊢ ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑆 ) |
24 |
12
|
eldifad |
⊢ ( 𝜑 → 𝑃 ∈ ℙ ) |
25 |
1
|
znfld |
⊢ ( 𝑃 ∈ ℙ → 𝑌 ∈ Field ) |
26 |
24 25
|
syl |
⊢ ( 𝜑 → 𝑌 ∈ Field ) |
27 |
|
fldidom |
⊢ ( 𝑌 ∈ Field → 𝑌 ∈ IDomn ) |
28 |
26 27
|
syl |
⊢ ( 𝜑 → 𝑌 ∈ IDomn ) |
29 |
|
isidom |
⊢ ( 𝑌 ∈ IDomn ↔ ( 𝑌 ∈ CRing ∧ 𝑌 ∈ Domn ) ) |
30 |
29
|
simplbi |
⊢ ( 𝑌 ∈ IDomn → 𝑌 ∈ CRing ) |
31 |
28 30
|
syl |
⊢ ( 𝜑 → 𝑌 ∈ CRing ) |
32 |
|
crngring |
⊢ ( 𝑌 ∈ CRing → 𝑌 ∈ Ring ) |
33 |
31 32
|
syl |
⊢ ( 𝜑 → 𝑌 ∈ Ring ) |
34 |
2
|
ply1ring |
⊢ ( 𝑌 ∈ Ring → 𝑆 ∈ Ring ) |
35 |
33 34
|
syl |
⊢ ( 𝜑 → 𝑆 ∈ Ring ) |
36 |
|
ringgrp |
⊢ ( 𝑆 ∈ Ring → 𝑆 ∈ Grp ) |
37 |
35 36
|
syl |
⊢ ( 𝜑 → 𝑆 ∈ Grp ) |
38 |
|
eqid |
⊢ ( mulGrp ‘ 𝑆 ) = ( mulGrp ‘ 𝑆 ) |
39 |
38
|
ringmgp |
⊢ ( 𝑆 ∈ Ring → ( mulGrp ‘ 𝑆 ) ∈ Mnd ) |
40 |
35 39
|
syl |
⊢ ( 𝜑 → ( mulGrp ‘ 𝑆 ) ∈ Mnd ) |
41 |
|
oddprm |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → ( ( 𝑃 − 1 ) / 2 ) ∈ ℕ ) |
42 |
12 41
|
syl |
⊢ ( 𝜑 → ( ( 𝑃 − 1 ) / 2 ) ∈ ℕ ) |
43 |
42
|
nnnn0d |
⊢ ( 𝜑 → ( ( 𝑃 − 1 ) / 2 ) ∈ ℕ0 ) |
44 |
7 2 3
|
vr1cl |
⊢ ( 𝑌 ∈ Ring → 𝑋 ∈ 𝐵 ) |
45 |
33 44
|
syl |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
46 |
38 3
|
mgpbas |
⊢ 𝐵 = ( Base ‘ ( mulGrp ‘ 𝑆 ) ) |
47 |
46 6
|
mulgnn0cl |
⊢ ( ( ( mulGrp ‘ 𝑆 ) ∈ Mnd ∧ ( ( 𝑃 − 1 ) / 2 ) ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) → ( ( ( 𝑃 − 1 ) / 2 ) ↑ 𝑋 ) ∈ 𝐵 ) |
48 |
40 43 45 47
|
syl3anc |
⊢ ( 𝜑 → ( ( ( 𝑃 − 1 ) / 2 ) ↑ 𝑋 ) ∈ 𝐵 ) |
49 |
3 9
|
ringidcl |
⊢ ( 𝑆 ∈ Ring → 1 ∈ 𝐵 ) |
50 |
35 49
|
syl |
⊢ ( 𝜑 → 1 ∈ 𝐵 ) |
51 |
3 8
|
grpsubcl |
⊢ ( ( 𝑆 ∈ Grp ∧ ( ( ( 𝑃 − 1 ) / 2 ) ↑ 𝑋 ) ∈ 𝐵 ∧ 1 ∈ 𝐵 ) → ( ( ( ( 𝑃 − 1 ) / 2 ) ↑ 𝑋 ) − 1 ) ∈ 𝐵 ) |
52 |
37 48 50 51
|
syl3anc |
⊢ ( 𝜑 → ( ( ( ( 𝑃 − 1 ) / 2 ) ↑ 𝑋 ) − 1 ) ∈ 𝐵 ) |
53 |
10 52
|
eqeltrid |
⊢ ( 𝜑 → 𝑇 ∈ 𝐵 ) |
54 |
10
|
fveq2i |
⊢ ( 𝐷 ‘ 𝑇 ) = ( 𝐷 ‘ ( ( ( ( 𝑃 − 1 ) / 2 ) ↑ 𝑋 ) − 1 ) ) |
55 |
42
|
nngt0d |
⊢ ( 𝜑 → 0 < ( ( 𝑃 − 1 ) / 2 ) ) |
56 |
|
eqid |
⊢ ( algSc ‘ 𝑆 ) = ( algSc ‘ 𝑆 ) |
57 |
|
eqid |
⊢ ( 1r ‘ 𝑌 ) = ( 1r ‘ 𝑌 ) |
58 |
2 56 57 9
|
ply1scl1 |
⊢ ( 𝑌 ∈ Ring → ( ( algSc ‘ 𝑆 ) ‘ ( 1r ‘ 𝑌 ) ) = 1 ) |
59 |
33 58
|
syl |
⊢ ( 𝜑 → ( ( algSc ‘ 𝑆 ) ‘ ( 1r ‘ 𝑌 ) ) = 1 ) |
60 |
59
|
fveq2d |
⊢ ( 𝜑 → ( 𝐷 ‘ ( ( algSc ‘ 𝑆 ) ‘ ( 1r ‘ 𝑌 ) ) ) = ( 𝐷 ‘ 1 ) ) |
61 |
|
eqid |
⊢ ( Base ‘ 𝑌 ) = ( Base ‘ 𝑌 ) |
62 |
61 57
|
ringidcl |
⊢ ( 𝑌 ∈ Ring → ( 1r ‘ 𝑌 ) ∈ ( Base ‘ 𝑌 ) ) |
63 |
33 62
|
syl |
⊢ ( 𝜑 → ( 1r ‘ 𝑌 ) ∈ ( Base ‘ 𝑌 ) ) |
64 |
|
domnnzr |
⊢ ( 𝑌 ∈ Domn → 𝑌 ∈ NzRing ) |
65 |
29 64
|
simplbiim |
⊢ ( 𝑌 ∈ IDomn → 𝑌 ∈ NzRing ) |
66 |
28 65
|
syl |
⊢ ( 𝜑 → 𝑌 ∈ NzRing ) |
67 |
57 22
|
nzrnz |
⊢ ( 𝑌 ∈ NzRing → ( 1r ‘ 𝑌 ) ≠ ( 0g ‘ 𝑌 ) ) |
68 |
66 67
|
syl |
⊢ ( 𝜑 → ( 1r ‘ 𝑌 ) ≠ ( 0g ‘ 𝑌 ) ) |
69 |
4 2 61 56 22
|
deg1scl |
⊢ ( ( 𝑌 ∈ Ring ∧ ( 1r ‘ 𝑌 ) ∈ ( Base ‘ 𝑌 ) ∧ ( 1r ‘ 𝑌 ) ≠ ( 0g ‘ 𝑌 ) ) → ( 𝐷 ‘ ( ( algSc ‘ 𝑆 ) ‘ ( 1r ‘ 𝑌 ) ) ) = 0 ) |
70 |
33 63 68 69
|
syl3anc |
⊢ ( 𝜑 → ( 𝐷 ‘ ( ( algSc ‘ 𝑆 ) ‘ ( 1r ‘ 𝑌 ) ) ) = 0 ) |
71 |
60 70
|
eqtr3d |
⊢ ( 𝜑 → ( 𝐷 ‘ 1 ) = 0 ) |
72 |
4 2 7 38 6
|
deg1pw |
⊢ ( ( 𝑌 ∈ NzRing ∧ ( ( 𝑃 − 1 ) / 2 ) ∈ ℕ0 ) → ( 𝐷 ‘ ( ( ( 𝑃 − 1 ) / 2 ) ↑ 𝑋 ) ) = ( ( 𝑃 − 1 ) / 2 ) ) |
73 |
66 43 72
|
syl2anc |
⊢ ( 𝜑 → ( 𝐷 ‘ ( ( ( 𝑃 − 1 ) / 2 ) ↑ 𝑋 ) ) = ( ( 𝑃 − 1 ) / 2 ) ) |
74 |
55 71 73
|
3brtr4d |
⊢ ( 𝜑 → ( 𝐷 ‘ 1 ) < ( 𝐷 ‘ ( ( ( 𝑃 − 1 ) / 2 ) ↑ 𝑋 ) ) ) |
75 |
2 4 33 3 8 48 50 74
|
deg1sub |
⊢ ( 𝜑 → ( 𝐷 ‘ ( ( ( ( 𝑃 − 1 ) / 2 ) ↑ 𝑋 ) − 1 ) ) = ( 𝐷 ‘ ( ( ( 𝑃 − 1 ) / 2 ) ↑ 𝑋 ) ) ) |
76 |
54 75
|
syl5eq |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝑇 ) = ( 𝐷 ‘ ( ( ( 𝑃 − 1 ) / 2 ) ↑ 𝑋 ) ) ) |
77 |
76 73
|
eqtrd |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝑇 ) = ( ( 𝑃 − 1 ) / 2 ) ) |
78 |
77 43
|
eqeltrd |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝑇 ) ∈ ℕ0 ) |
79 |
4 2 23 3
|
deg1nn0clb |
⊢ ( ( 𝑌 ∈ Ring ∧ 𝑇 ∈ 𝐵 ) → ( 𝑇 ≠ ( 0g ‘ 𝑆 ) ↔ ( 𝐷 ‘ 𝑇 ) ∈ ℕ0 ) ) |
80 |
33 53 79
|
syl2anc |
⊢ ( 𝜑 → ( 𝑇 ≠ ( 0g ‘ 𝑆 ) ↔ ( 𝐷 ‘ 𝑇 ) ∈ ℕ0 ) ) |
81 |
78 80
|
mpbird |
⊢ ( 𝜑 → 𝑇 ≠ ( 0g ‘ 𝑆 ) ) |
82 |
2 3 4 5 22 23 28 53 81
|
fta1g |
⊢ ( 𝜑 → ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑇 ) “ { ( 0g ‘ 𝑌 ) } ) ) ≤ ( 𝐷 ‘ 𝑇 ) ) |
83 |
82 77
|
breqtrd |
⊢ ( 𝜑 → ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑇 ) “ { ( 0g ‘ 𝑌 ) } ) ) ≤ ( ( 𝑃 − 1 ) / 2 ) ) |
84 |
|
hashfz1 |
⊢ ( ( ( 𝑃 − 1 ) / 2 ) ∈ ℕ0 → ( ♯ ‘ ( 1 ... ( ( 𝑃 − 1 ) / 2 ) ) ) = ( ( 𝑃 − 1 ) / 2 ) ) |
85 |
43 84
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ ( 1 ... ( ( 𝑃 − 1 ) / 2 ) ) ) = ( ( 𝑃 − 1 ) / 2 ) ) |
86 |
83 85
|
breqtrrd |
⊢ ( 𝜑 → ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑇 ) “ { ( 0g ‘ 𝑌 ) } ) ) ≤ ( ♯ ‘ ( 1 ... ( ( 𝑃 − 1 ) / 2 ) ) ) ) |
87 |
|
hashbnd |
⊢ ( ( ( ◡ ( 𝑂 ‘ 𝑇 ) “ { ( 0g ‘ 𝑌 ) } ) ∈ V ∧ ( ( 𝑃 − 1 ) / 2 ) ∈ ℕ0 ∧ ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑇 ) “ { ( 0g ‘ 𝑌 ) } ) ) ≤ ( ( 𝑃 − 1 ) / 2 ) ) → ( ◡ ( 𝑂 ‘ 𝑇 ) “ { ( 0g ‘ 𝑌 ) } ) ∈ Fin ) |
88 |
19 43 83 87
|
mp3an2i |
⊢ ( 𝜑 → ( ◡ ( 𝑂 ‘ 𝑇 ) “ { ( 0g ‘ 𝑌 ) } ) ∈ Fin ) |
89 |
|
fzfid |
⊢ ( 𝜑 → ( 1 ... ( ( 𝑃 − 1 ) / 2 ) ) ∈ Fin ) |
90 |
|
hashdom |
⊢ ( ( ( ◡ ( 𝑂 ‘ 𝑇 ) “ { ( 0g ‘ 𝑌 ) } ) ∈ Fin ∧ ( 1 ... ( ( 𝑃 − 1 ) / 2 ) ) ∈ Fin ) → ( ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑇 ) “ { ( 0g ‘ 𝑌 ) } ) ) ≤ ( ♯ ‘ ( 1 ... ( ( 𝑃 − 1 ) / 2 ) ) ) ↔ ( ◡ ( 𝑂 ‘ 𝑇 ) “ { ( 0g ‘ 𝑌 ) } ) ≼ ( 1 ... ( ( 𝑃 − 1 ) / 2 ) ) ) ) |
91 |
88 89 90
|
syl2anc |
⊢ ( 𝜑 → ( ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑇 ) “ { ( 0g ‘ 𝑌 ) } ) ) ≤ ( ♯ ‘ ( 1 ... ( ( 𝑃 − 1 ) / 2 ) ) ) ↔ ( ◡ ( 𝑂 ‘ 𝑇 ) “ { ( 0g ‘ 𝑌 ) } ) ≼ ( 1 ... ( ( 𝑃 − 1 ) / 2 ) ) ) ) |
92 |
86 91
|
mpbid |
⊢ ( 𝜑 → ( ◡ ( 𝑂 ‘ 𝑇 ) “ { ( 0g ‘ 𝑌 ) } ) ≼ ( 1 ... ( ( 𝑃 − 1 ) / 2 ) ) ) |
93 |
|
sbth |
⊢ ( ( ( 1 ... ( ( 𝑃 − 1 ) / 2 ) ) ≼ ( ◡ ( 𝑂 ‘ 𝑇 ) “ { ( 0g ‘ 𝑌 ) } ) ∧ ( ◡ ( 𝑂 ‘ 𝑇 ) “ { ( 0g ‘ 𝑌 ) } ) ≼ ( 1 ... ( ( 𝑃 − 1 ) / 2 ) ) ) → ( 1 ... ( ( 𝑃 − 1 ) / 2 ) ) ≈ ( ◡ ( 𝑂 ‘ 𝑇 ) “ { ( 0g ‘ 𝑌 ) } ) ) |
94 |
21 92 93
|
syl2anc |
⊢ ( 𝜑 → ( 1 ... ( ( 𝑃 − 1 ) / 2 ) ) ≈ ( ◡ ( 𝑂 ‘ 𝑇 ) “ { ( 0g ‘ 𝑌 ) } ) ) |
95 |
|
f1finf1o |
⊢ ( ( ( 1 ... ( ( 𝑃 − 1 ) / 2 ) ) ≈ ( ◡ ( 𝑂 ‘ 𝑇 ) “ { ( 0g ‘ 𝑌 ) } ) ∧ ( ◡ ( 𝑂 ‘ 𝑇 ) “ { ( 0g ‘ 𝑌 ) } ) ∈ Fin ) → ( 𝐺 : ( 1 ... ( ( 𝑃 − 1 ) / 2 ) ) –1-1→ ( ◡ ( 𝑂 ‘ 𝑇 ) “ { ( 0g ‘ 𝑌 ) } ) ↔ 𝐺 : ( 1 ... ( ( 𝑃 − 1 ) / 2 ) ) –1-1-onto→ ( ◡ ( 𝑂 ‘ 𝑇 ) “ { ( 0g ‘ 𝑌 ) } ) ) ) |
96 |
94 88 95
|
syl2anc |
⊢ ( 𝜑 → ( 𝐺 : ( 1 ... ( ( 𝑃 − 1 ) / 2 ) ) –1-1→ ( ◡ ( 𝑂 ‘ 𝑇 ) “ { ( 0g ‘ 𝑌 ) } ) ↔ 𝐺 : ( 1 ... ( ( 𝑃 − 1 ) / 2 ) ) –1-1-onto→ ( ◡ ( 𝑂 ‘ 𝑇 ) “ { ( 0g ‘ 𝑌 ) } ) ) ) |
97 |
16 96
|
mpbid |
⊢ ( 𝜑 → 𝐺 : ( 1 ... ( ( 𝑃 − 1 ) / 2 ) ) –1-1-onto→ ( ◡ ( 𝑂 ‘ 𝑇 ) “ { ( 0g ‘ 𝑌 ) } ) ) |
98 |
|
f1ocnv |
⊢ ( 𝐺 : ( 1 ... ( ( 𝑃 − 1 ) / 2 ) ) –1-1-onto→ ( ◡ ( 𝑂 ‘ 𝑇 ) “ { ( 0g ‘ 𝑌 ) } ) → ◡ 𝐺 : ( ◡ ( 𝑂 ‘ 𝑇 ) “ { ( 0g ‘ 𝑌 ) } ) –1-1-onto→ ( 1 ... ( ( 𝑃 − 1 ) / 2 ) ) ) |
99 |
|
f1of |
⊢ ( ◡ 𝐺 : ( ◡ ( 𝑂 ‘ 𝑇 ) “ { ( 0g ‘ 𝑌 ) } ) –1-1-onto→ ( 1 ... ( ( 𝑃 − 1 ) / 2 ) ) → ◡ 𝐺 : ( ◡ ( 𝑂 ‘ 𝑇 ) “ { ( 0g ‘ 𝑌 ) } ) ⟶ ( 1 ... ( ( 𝑃 − 1 ) / 2 ) ) ) |
100 |
97 98 99
|
3syl |
⊢ ( 𝜑 → ◡ 𝐺 : ( ◡ ( 𝑂 ‘ 𝑇 ) “ { ( 0g ‘ 𝑌 ) } ) ⟶ ( 1 ... ( ( 𝑃 − 1 ) / 2 ) ) ) |
101 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
|
lgsqrlem3 |
⊢ ( 𝜑 → ( 𝐿 ‘ 𝐴 ) ∈ ( ◡ ( 𝑂 ‘ 𝑇 ) “ { ( 0g ‘ 𝑌 ) } ) ) |
102 |
100 101
|
ffvelrnd |
⊢ ( 𝜑 → ( ◡ 𝐺 ‘ ( 𝐿 ‘ 𝐴 ) ) ∈ ( 1 ... ( ( 𝑃 − 1 ) / 2 ) ) ) |
103 |
102
|
elfzelzd |
⊢ ( 𝜑 → ( ◡ 𝐺 ‘ ( 𝐿 ‘ 𝐴 ) ) ∈ ℤ ) |
104 |
|
fvoveq1 |
⊢ ( 𝑥 = ( ◡ 𝐺 ‘ ( 𝐿 ‘ 𝐴 ) ) → ( 𝐿 ‘ ( 𝑥 ↑ 2 ) ) = ( 𝐿 ‘ ( ( ◡ 𝐺 ‘ ( 𝐿 ‘ 𝐴 ) ) ↑ 2 ) ) ) |
105 |
|
fvoveq1 |
⊢ ( 𝑦 = 𝑥 → ( 𝐿 ‘ ( 𝑦 ↑ 2 ) ) = ( 𝐿 ‘ ( 𝑥 ↑ 2 ) ) ) |
106 |
105
|
cbvmptv |
⊢ ( 𝑦 ∈ ( 1 ... ( ( 𝑃 − 1 ) / 2 ) ) ↦ ( 𝐿 ‘ ( 𝑦 ↑ 2 ) ) ) = ( 𝑥 ∈ ( 1 ... ( ( 𝑃 − 1 ) / 2 ) ) ↦ ( 𝐿 ‘ ( 𝑥 ↑ 2 ) ) ) |
107 |
13 106
|
eqtri |
⊢ 𝐺 = ( 𝑥 ∈ ( 1 ... ( ( 𝑃 − 1 ) / 2 ) ) ↦ ( 𝐿 ‘ ( 𝑥 ↑ 2 ) ) ) |
108 |
|
fvex |
⊢ ( 𝐿 ‘ ( ( ◡ 𝐺 ‘ ( 𝐿 ‘ 𝐴 ) ) ↑ 2 ) ) ∈ V |
109 |
104 107 108
|
fvmpt |
⊢ ( ( ◡ 𝐺 ‘ ( 𝐿 ‘ 𝐴 ) ) ∈ ( 1 ... ( ( 𝑃 − 1 ) / 2 ) ) → ( 𝐺 ‘ ( ◡ 𝐺 ‘ ( 𝐿 ‘ 𝐴 ) ) ) = ( 𝐿 ‘ ( ( ◡ 𝐺 ‘ ( 𝐿 ‘ 𝐴 ) ) ↑ 2 ) ) ) |
110 |
102 109
|
syl |
⊢ ( 𝜑 → ( 𝐺 ‘ ( ◡ 𝐺 ‘ ( 𝐿 ‘ 𝐴 ) ) ) = ( 𝐿 ‘ ( ( ◡ 𝐺 ‘ ( 𝐿 ‘ 𝐴 ) ) ↑ 2 ) ) ) |
111 |
|
f1ocnvfv2 |
⊢ ( ( 𝐺 : ( 1 ... ( ( 𝑃 − 1 ) / 2 ) ) –1-1-onto→ ( ◡ ( 𝑂 ‘ 𝑇 ) “ { ( 0g ‘ 𝑌 ) } ) ∧ ( 𝐿 ‘ 𝐴 ) ∈ ( ◡ ( 𝑂 ‘ 𝑇 ) “ { ( 0g ‘ 𝑌 ) } ) ) → ( 𝐺 ‘ ( ◡ 𝐺 ‘ ( 𝐿 ‘ 𝐴 ) ) ) = ( 𝐿 ‘ 𝐴 ) ) |
112 |
97 101 111
|
syl2anc |
⊢ ( 𝜑 → ( 𝐺 ‘ ( ◡ 𝐺 ‘ ( 𝐿 ‘ 𝐴 ) ) ) = ( 𝐿 ‘ 𝐴 ) ) |
113 |
110 112
|
eqtr3d |
⊢ ( 𝜑 → ( 𝐿 ‘ ( ( ◡ 𝐺 ‘ ( 𝐿 ‘ 𝐴 ) ) ↑ 2 ) ) = ( 𝐿 ‘ 𝐴 ) ) |
114 |
|
prmnn |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ ) |
115 |
24 114
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ ℕ ) |
116 |
115
|
nnnn0d |
⊢ ( 𝜑 → 𝑃 ∈ ℕ0 ) |
117 |
|
zsqcl |
⊢ ( ( ◡ 𝐺 ‘ ( 𝐿 ‘ 𝐴 ) ) ∈ ℤ → ( ( ◡ 𝐺 ‘ ( 𝐿 ‘ 𝐴 ) ) ↑ 2 ) ∈ ℤ ) |
118 |
103 117
|
syl |
⊢ ( 𝜑 → ( ( ◡ 𝐺 ‘ ( 𝐿 ‘ 𝐴 ) ) ↑ 2 ) ∈ ℤ ) |
119 |
1 11
|
zndvds |
⊢ ( ( 𝑃 ∈ ℕ0 ∧ ( ( ◡ 𝐺 ‘ ( 𝐿 ‘ 𝐴 ) ) ↑ 2 ) ∈ ℤ ∧ 𝐴 ∈ ℤ ) → ( ( 𝐿 ‘ ( ( ◡ 𝐺 ‘ ( 𝐿 ‘ 𝐴 ) ) ↑ 2 ) ) = ( 𝐿 ‘ 𝐴 ) ↔ 𝑃 ∥ ( ( ( ◡ 𝐺 ‘ ( 𝐿 ‘ 𝐴 ) ) ↑ 2 ) − 𝐴 ) ) ) |
120 |
116 118 14 119
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐿 ‘ ( ( ◡ 𝐺 ‘ ( 𝐿 ‘ 𝐴 ) ) ↑ 2 ) ) = ( 𝐿 ‘ 𝐴 ) ↔ 𝑃 ∥ ( ( ( ◡ 𝐺 ‘ ( 𝐿 ‘ 𝐴 ) ) ↑ 2 ) − 𝐴 ) ) ) |
121 |
113 120
|
mpbid |
⊢ ( 𝜑 → 𝑃 ∥ ( ( ( ◡ 𝐺 ‘ ( 𝐿 ‘ 𝐴 ) ) ↑ 2 ) − 𝐴 ) ) |
122 |
|
oveq1 |
⊢ ( 𝑥 = ( ◡ 𝐺 ‘ ( 𝐿 ‘ 𝐴 ) ) → ( 𝑥 ↑ 2 ) = ( ( ◡ 𝐺 ‘ ( 𝐿 ‘ 𝐴 ) ) ↑ 2 ) ) |
123 |
122
|
oveq1d |
⊢ ( 𝑥 = ( ◡ 𝐺 ‘ ( 𝐿 ‘ 𝐴 ) ) → ( ( 𝑥 ↑ 2 ) − 𝐴 ) = ( ( ( ◡ 𝐺 ‘ ( 𝐿 ‘ 𝐴 ) ) ↑ 2 ) − 𝐴 ) ) |
124 |
123
|
breq2d |
⊢ ( 𝑥 = ( ◡ 𝐺 ‘ ( 𝐿 ‘ 𝐴 ) ) → ( 𝑃 ∥ ( ( 𝑥 ↑ 2 ) − 𝐴 ) ↔ 𝑃 ∥ ( ( ( ◡ 𝐺 ‘ ( 𝐿 ‘ 𝐴 ) ) ↑ 2 ) − 𝐴 ) ) ) |
125 |
124
|
rspcev |
⊢ ( ( ( ◡ 𝐺 ‘ ( 𝐿 ‘ 𝐴 ) ) ∈ ℤ ∧ 𝑃 ∥ ( ( ( ◡ 𝐺 ‘ ( 𝐿 ‘ 𝐴 ) ) ↑ 2 ) − 𝐴 ) ) → ∃ 𝑥 ∈ ℤ 𝑃 ∥ ( ( 𝑥 ↑ 2 ) − 𝐴 ) ) |
126 |
103 121 125
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ℤ 𝑃 ∥ ( ( 𝑥 ↑ 2 ) − 𝐴 ) ) |