| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lgsqr.y | ⊢ 𝑌  =  ( ℤ/nℤ ‘ 𝑃 ) | 
						
							| 2 |  | lgsqr.s | ⊢ 𝑆  =  ( Poly1 ‘ 𝑌 ) | 
						
							| 3 |  | lgsqr.b | ⊢ 𝐵  =  ( Base ‘ 𝑆 ) | 
						
							| 4 |  | lgsqr.d | ⊢ 𝐷  =  ( deg1 ‘ 𝑌 ) | 
						
							| 5 |  | lgsqr.o | ⊢ 𝑂  =  ( eval1 ‘ 𝑌 ) | 
						
							| 6 |  | lgsqr.e | ⊢  ↑   =  ( .g ‘ ( mulGrp ‘ 𝑆 ) ) | 
						
							| 7 |  | lgsqr.x | ⊢ 𝑋  =  ( var1 ‘ 𝑌 ) | 
						
							| 8 |  | lgsqr.m | ⊢  −   =  ( -g ‘ 𝑆 ) | 
						
							| 9 |  | lgsqr.u | ⊢  1   =  ( 1r ‘ 𝑆 ) | 
						
							| 10 |  | lgsqr.t | ⊢ 𝑇  =  ( ( ( ( 𝑃  −  1 )  /  2 )  ↑  𝑋 )  −   1  ) | 
						
							| 11 |  | lgsqr.l | ⊢ 𝐿  =  ( ℤRHom ‘ 𝑌 ) | 
						
							| 12 |  | lgsqr.1 | ⊢ ( 𝜑  →  𝑃  ∈  ( ℙ  ∖  { 2 } ) ) | 
						
							| 13 |  | lgsqr.g | ⊢ 𝐺  =  ( 𝑦  ∈  ( 1 ... ( ( 𝑃  −  1 )  /  2 ) )  ↦  ( 𝐿 ‘ ( 𝑦 ↑ 2 ) ) ) | 
						
							| 14 |  | lgsqr.3 | ⊢ ( 𝜑  →  𝐴  ∈  ℤ ) | 
						
							| 15 |  | lgsqr.4 | ⊢ ( 𝜑  →  ( 𝐴  /L  𝑃 )  =  1 ) | 
						
							| 16 | 1 2 3 4 5 6 7 8 9 10 11 12 13 | lgsqrlem2 | ⊢ ( 𝜑  →  𝐺 : ( 1 ... ( ( 𝑃  −  1 )  /  2 ) ) –1-1→ ( ◡ ( 𝑂 ‘ 𝑇 )  “  { ( 0g ‘ 𝑌 ) } ) ) | 
						
							| 17 |  | fvex | ⊢ ( 𝑂 ‘ 𝑇 )  ∈  V | 
						
							| 18 | 17 | cnvex | ⊢ ◡ ( 𝑂 ‘ 𝑇 )  ∈  V | 
						
							| 19 | 18 | imaex | ⊢ ( ◡ ( 𝑂 ‘ 𝑇 )  “  { ( 0g ‘ 𝑌 ) } )  ∈  V | 
						
							| 20 | 19 | f1dom | ⊢ ( 𝐺 : ( 1 ... ( ( 𝑃  −  1 )  /  2 ) ) –1-1→ ( ◡ ( 𝑂 ‘ 𝑇 )  “  { ( 0g ‘ 𝑌 ) } )  →  ( 1 ... ( ( 𝑃  −  1 )  /  2 ) )  ≼  ( ◡ ( 𝑂 ‘ 𝑇 )  “  { ( 0g ‘ 𝑌 ) } ) ) | 
						
							| 21 | 16 20 | syl | ⊢ ( 𝜑  →  ( 1 ... ( ( 𝑃  −  1 )  /  2 ) )  ≼  ( ◡ ( 𝑂 ‘ 𝑇 )  “  { ( 0g ‘ 𝑌 ) } ) ) | 
						
							| 22 |  | eqid | ⊢ ( 0g ‘ 𝑌 )  =  ( 0g ‘ 𝑌 ) | 
						
							| 23 |  | eqid | ⊢ ( 0g ‘ 𝑆 )  =  ( 0g ‘ 𝑆 ) | 
						
							| 24 | 12 | eldifad | ⊢ ( 𝜑  →  𝑃  ∈  ℙ ) | 
						
							| 25 | 1 | znfld | ⊢ ( 𝑃  ∈  ℙ  →  𝑌  ∈  Field ) | 
						
							| 26 | 24 25 | syl | ⊢ ( 𝜑  →  𝑌  ∈  Field ) | 
						
							| 27 |  | fldidom | ⊢ ( 𝑌  ∈  Field  →  𝑌  ∈  IDomn ) | 
						
							| 28 | 26 27 | syl | ⊢ ( 𝜑  →  𝑌  ∈  IDomn ) | 
						
							| 29 |  | isidom | ⊢ ( 𝑌  ∈  IDomn  ↔  ( 𝑌  ∈  CRing  ∧  𝑌  ∈  Domn ) ) | 
						
							| 30 | 29 | simplbi | ⊢ ( 𝑌  ∈  IDomn  →  𝑌  ∈  CRing ) | 
						
							| 31 | 28 30 | syl | ⊢ ( 𝜑  →  𝑌  ∈  CRing ) | 
						
							| 32 |  | crngring | ⊢ ( 𝑌  ∈  CRing  →  𝑌  ∈  Ring ) | 
						
							| 33 | 31 32 | syl | ⊢ ( 𝜑  →  𝑌  ∈  Ring ) | 
						
							| 34 | 2 | ply1ring | ⊢ ( 𝑌  ∈  Ring  →  𝑆  ∈  Ring ) | 
						
							| 35 | 33 34 | syl | ⊢ ( 𝜑  →  𝑆  ∈  Ring ) | 
						
							| 36 |  | ringgrp | ⊢ ( 𝑆  ∈  Ring  →  𝑆  ∈  Grp ) | 
						
							| 37 | 35 36 | syl | ⊢ ( 𝜑  →  𝑆  ∈  Grp ) | 
						
							| 38 |  | eqid | ⊢ ( mulGrp ‘ 𝑆 )  =  ( mulGrp ‘ 𝑆 ) | 
						
							| 39 | 38 3 | mgpbas | ⊢ 𝐵  =  ( Base ‘ ( mulGrp ‘ 𝑆 ) ) | 
						
							| 40 | 38 | ringmgp | ⊢ ( 𝑆  ∈  Ring  →  ( mulGrp ‘ 𝑆 )  ∈  Mnd ) | 
						
							| 41 | 35 40 | syl | ⊢ ( 𝜑  →  ( mulGrp ‘ 𝑆 )  ∈  Mnd ) | 
						
							| 42 |  | oddprm | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  ( ( 𝑃  −  1 )  /  2 )  ∈  ℕ ) | 
						
							| 43 | 12 42 | syl | ⊢ ( 𝜑  →  ( ( 𝑃  −  1 )  /  2 )  ∈  ℕ ) | 
						
							| 44 | 43 | nnnn0d | ⊢ ( 𝜑  →  ( ( 𝑃  −  1 )  /  2 )  ∈  ℕ0 ) | 
						
							| 45 | 7 2 3 | vr1cl | ⊢ ( 𝑌  ∈  Ring  →  𝑋  ∈  𝐵 ) | 
						
							| 46 | 33 45 | syl | ⊢ ( 𝜑  →  𝑋  ∈  𝐵 ) | 
						
							| 47 | 39 6 41 44 46 | mulgnn0cld | ⊢ ( 𝜑  →  ( ( ( 𝑃  −  1 )  /  2 )  ↑  𝑋 )  ∈  𝐵 ) | 
						
							| 48 | 3 9 | ringidcl | ⊢ ( 𝑆  ∈  Ring  →   1   ∈  𝐵 ) | 
						
							| 49 | 35 48 | syl | ⊢ ( 𝜑  →   1   ∈  𝐵 ) | 
						
							| 50 | 3 8 | grpsubcl | ⊢ ( ( 𝑆  ∈  Grp  ∧  ( ( ( 𝑃  −  1 )  /  2 )  ↑  𝑋 )  ∈  𝐵  ∧   1   ∈  𝐵 )  →  ( ( ( ( 𝑃  −  1 )  /  2 )  ↑  𝑋 )  −   1  )  ∈  𝐵 ) | 
						
							| 51 | 37 47 49 50 | syl3anc | ⊢ ( 𝜑  →  ( ( ( ( 𝑃  −  1 )  /  2 )  ↑  𝑋 )  −   1  )  ∈  𝐵 ) | 
						
							| 52 | 10 51 | eqeltrid | ⊢ ( 𝜑  →  𝑇  ∈  𝐵 ) | 
						
							| 53 | 10 | fveq2i | ⊢ ( 𝐷 ‘ 𝑇 )  =  ( 𝐷 ‘ ( ( ( ( 𝑃  −  1 )  /  2 )  ↑  𝑋 )  −   1  ) ) | 
						
							| 54 | 43 | nngt0d | ⊢ ( 𝜑  →  0  <  ( ( 𝑃  −  1 )  /  2 ) ) | 
						
							| 55 |  | eqid | ⊢ ( algSc ‘ 𝑆 )  =  ( algSc ‘ 𝑆 ) | 
						
							| 56 |  | eqid | ⊢ ( 1r ‘ 𝑌 )  =  ( 1r ‘ 𝑌 ) | 
						
							| 57 | 2 55 56 9 | ply1scl1 | ⊢ ( 𝑌  ∈  Ring  →  ( ( algSc ‘ 𝑆 ) ‘ ( 1r ‘ 𝑌 ) )  =   1  ) | 
						
							| 58 | 33 57 | syl | ⊢ ( 𝜑  →  ( ( algSc ‘ 𝑆 ) ‘ ( 1r ‘ 𝑌 ) )  =   1  ) | 
						
							| 59 | 58 | fveq2d | ⊢ ( 𝜑  →  ( 𝐷 ‘ ( ( algSc ‘ 𝑆 ) ‘ ( 1r ‘ 𝑌 ) ) )  =  ( 𝐷 ‘  1  ) ) | 
						
							| 60 |  | eqid | ⊢ ( Base ‘ 𝑌 )  =  ( Base ‘ 𝑌 ) | 
						
							| 61 | 60 56 | ringidcl | ⊢ ( 𝑌  ∈  Ring  →  ( 1r ‘ 𝑌 )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 62 | 33 61 | syl | ⊢ ( 𝜑  →  ( 1r ‘ 𝑌 )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 63 |  | domnnzr | ⊢ ( 𝑌  ∈  Domn  →  𝑌  ∈  NzRing ) | 
						
							| 64 | 29 63 | simplbiim | ⊢ ( 𝑌  ∈  IDomn  →  𝑌  ∈  NzRing ) | 
						
							| 65 | 28 64 | syl | ⊢ ( 𝜑  →  𝑌  ∈  NzRing ) | 
						
							| 66 | 56 22 | nzrnz | ⊢ ( 𝑌  ∈  NzRing  →  ( 1r ‘ 𝑌 )  ≠  ( 0g ‘ 𝑌 ) ) | 
						
							| 67 | 65 66 | syl | ⊢ ( 𝜑  →  ( 1r ‘ 𝑌 )  ≠  ( 0g ‘ 𝑌 ) ) | 
						
							| 68 | 4 2 60 55 22 | deg1scl | ⊢ ( ( 𝑌  ∈  Ring  ∧  ( 1r ‘ 𝑌 )  ∈  ( Base ‘ 𝑌 )  ∧  ( 1r ‘ 𝑌 )  ≠  ( 0g ‘ 𝑌 ) )  →  ( 𝐷 ‘ ( ( algSc ‘ 𝑆 ) ‘ ( 1r ‘ 𝑌 ) ) )  =  0 ) | 
						
							| 69 | 33 62 67 68 | syl3anc | ⊢ ( 𝜑  →  ( 𝐷 ‘ ( ( algSc ‘ 𝑆 ) ‘ ( 1r ‘ 𝑌 ) ) )  =  0 ) | 
						
							| 70 | 59 69 | eqtr3d | ⊢ ( 𝜑  →  ( 𝐷 ‘  1  )  =  0 ) | 
						
							| 71 | 4 2 7 38 6 | deg1pw | ⊢ ( ( 𝑌  ∈  NzRing  ∧  ( ( 𝑃  −  1 )  /  2 )  ∈  ℕ0 )  →  ( 𝐷 ‘ ( ( ( 𝑃  −  1 )  /  2 )  ↑  𝑋 ) )  =  ( ( 𝑃  −  1 )  /  2 ) ) | 
						
							| 72 | 65 44 71 | syl2anc | ⊢ ( 𝜑  →  ( 𝐷 ‘ ( ( ( 𝑃  −  1 )  /  2 )  ↑  𝑋 ) )  =  ( ( 𝑃  −  1 )  /  2 ) ) | 
						
							| 73 | 54 70 72 | 3brtr4d | ⊢ ( 𝜑  →  ( 𝐷 ‘  1  )  <  ( 𝐷 ‘ ( ( ( 𝑃  −  1 )  /  2 )  ↑  𝑋 ) ) ) | 
						
							| 74 | 2 4 33 3 8 47 49 73 | deg1sub | ⊢ ( 𝜑  →  ( 𝐷 ‘ ( ( ( ( 𝑃  −  1 )  /  2 )  ↑  𝑋 )  −   1  ) )  =  ( 𝐷 ‘ ( ( ( 𝑃  −  1 )  /  2 )  ↑  𝑋 ) ) ) | 
						
							| 75 | 53 74 | eqtrid | ⊢ ( 𝜑  →  ( 𝐷 ‘ 𝑇 )  =  ( 𝐷 ‘ ( ( ( 𝑃  −  1 )  /  2 )  ↑  𝑋 ) ) ) | 
						
							| 76 | 75 72 | eqtrd | ⊢ ( 𝜑  →  ( 𝐷 ‘ 𝑇 )  =  ( ( 𝑃  −  1 )  /  2 ) ) | 
						
							| 77 | 76 44 | eqeltrd | ⊢ ( 𝜑  →  ( 𝐷 ‘ 𝑇 )  ∈  ℕ0 ) | 
						
							| 78 | 4 2 23 3 | deg1nn0clb | ⊢ ( ( 𝑌  ∈  Ring  ∧  𝑇  ∈  𝐵 )  →  ( 𝑇  ≠  ( 0g ‘ 𝑆 )  ↔  ( 𝐷 ‘ 𝑇 )  ∈  ℕ0 ) ) | 
						
							| 79 | 33 52 78 | syl2anc | ⊢ ( 𝜑  →  ( 𝑇  ≠  ( 0g ‘ 𝑆 )  ↔  ( 𝐷 ‘ 𝑇 )  ∈  ℕ0 ) ) | 
						
							| 80 | 77 79 | mpbird | ⊢ ( 𝜑  →  𝑇  ≠  ( 0g ‘ 𝑆 ) ) | 
						
							| 81 | 2 3 4 5 22 23 28 52 80 | fta1g | ⊢ ( 𝜑  →  ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑇 )  “  { ( 0g ‘ 𝑌 ) } ) )  ≤  ( 𝐷 ‘ 𝑇 ) ) | 
						
							| 82 | 81 76 | breqtrd | ⊢ ( 𝜑  →  ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑇 )  “  { ( 0g ‘ 𝑌 ) } ) )  ≤  ( ( 𝑃  −  1 )  /  2 ) ) | 
						
							| 83 |  | hashfz1 | ⊢ ( ( ( 𝑃  −  1 )  /  2 )  ∈  ℕ0  →  ( ♯ ‘ ( 1 ... ( ( 𝑃  −  1 )  /  2 ) ) )  =  ( ( 𝑃  −  1 )  /  2 ) ) | 
						
							| 84 | 44 83 | syl | ⊢ ( 𝜑  →  ( ♯ ‘ ( 1 ... ( ( 𝑃  −  1 )  /  2 ) ) )  =  ( ( 𝑃  −  1 )  /  2 ) ) | 
						
							| 85 | 82 84 | breqtrrd | ⊢ ( 𝜑  →  ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑇 )  “  { ( 0g ‘ 𝑌 ) } ) )  ≤  ( ♯ ‘ ( 1 ... ( ( 𝑃  −  1 )  /  2 ) ) ) ) | 
						
							| 86 |  | hashbnd | ⊢ ( ( ( ◡ ( 𝑂 ‘ 𝑇 )  “  { ( 0g ‘ 𝑌 ) } )  ∈  V  ∧  ( ( 𝑃  −  1 )  /  2 )  ∈  ℕ0  ∧  ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑇 )  “  { ( 0g ‘ 𝑌 ) } ) )  ≤  ( ( 𝑃  −  1 )  /  2 ) )  →  ( ◡ ( 𝑂 ‘ 𝑇 )  “  { ( 0g ‘ 𝑌 ) } )  ∈  Fin ) | 
						
							| 87 | 19 44 82 86 | mp3an2i | ⊢ ( 𝜑  →  ( ◡ ( 𝑂 ‘ 𝑇 )  “  { ( 0g ‘ 𝑌 ) } )  ∈  Fin ) | 
						
							| 88 |  | fzfid | ⊢ ( 𝜑  →  ( 1 ... ( ( 𝑃  −  1 )  /  2 ) )  ∈  Fin ) | 
						
							| 89 |  | hashdom | ⊢ ( ( ( ◡ ( 𝑂 ‘ 𝑇 )  “  { ( 0g ‘ 𝑌 ) } )  ∈  Fin  ∧  ( 1 ... ( ( 𝑃  −  1 )  /  2 ) )  ∈  Fin )  →  ( ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑇 )  “  { ( 0g ‘ 𝑌 ) } ) )  ≤  ( ♯ ‘ ( 1 ... ( ( 𝑃  −  1 )  /  2 ) ) )  ↔  ( ◡ ( 𝑂 ‘ 𝑇 )  “  { ( 0g ‘ 𝑌 ) } )  ≼  ( 1 ... ( ( 𝑃  −  1 )  /  2 ) ) ) ) | 
						
							| 90 | 87 88 89 | syl2anc | ⊢ ( 𝜑  →  ( ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑇 )  “  { ( 0g ‘ 𝑌 ) } ) )  ≤  ( ♯ ‘ ( 1 ... ( ( 𝑃  −  1 )  /  2 ) ) )  ↔  ( ◡ ( 𝑂 ‘ 𝑇 )  “  { ( 0g ‘ 𝑌 ) } )  ≼  ( 1 ... ( ( 𝑃  −  1 )  /  2 ) ) ) ) | 
						
							| 91 | 85 90 | mpbid | ⊢ ( 𝜑  →  ( ◡ ( 𝑂 ‘ 𝑇 )  “  { ( 0g ‘ 𝑌 ) } )  ≼  ( 1 ... ( ( 𝑃  −  1 )  /  2 ) ) ) | 
						
							| 92 |  | sbth | ⊢ ( ( ( 1 ... ( ( 𝑃  −  1 )  /  2 ) )  ≼  ( ◡ ( 𝑂 ‘ 𝑇 )  “  { ( 0g ‘ 𝑌 ) } )  ∧  ( ◡ ( 𝑂 ‘ 𝑇 )  “  { ( 0g ‘ 𝑌 ) } )  ≼  ( 1 ... ( ( 𝑃  −  1 )  /  2 ) ) )  →  ( 1 ... ( ( 𝑃  −  1 )  /  2 ) )  ≈  ( ◡ ( 𝑂 ‘ 𝑇 )  “  { ( 0g ‘ 𝑌 ) } ) ) | 
						
							| 93 | 21 91 92 | syl2anc | ⊢ ( 𝜑  →  ( 1 ... ( ( 𝑃  −  1 )  /  2 ) )  ≈  ( ◡ ( 𝑂 ‘ 𝑇 )  “  { ( 0g ‘ 𝑌 ) } ) ) | 
						
							| 94 |  | f1finf1o | ⊢ ( ( ( 1 ... ( ( 𝑃  −  1 )  /  2 ) )  ≈  ( ◡ ( 𝑂 ‘ 𝑇 )  “  { ( 0g ‘ 𝑌 ) } )  ∧  ( ◡ ( 𝑂 ‘ 𝑇 )  “  { ( 0g ‘ 𝑌 ) } )  ∈  Fin )  →  ( 𝐺 : ( 1 ... ( ( 𝑃  −  1 )  /  2 ) ) –1-1→ ( ◡ ( 𝑂 ‘ 𝑇 )  “  { ( 0g ‘ 𝑌 ) } )  ↔  𝐺 : ( 1 ... ( ( 𝑃  −  1 )  /  2 ) ) –1-1-onto→ ( ◡ ( 𝑂 ‘ 𝑇 )  “  { ( 0g ‘ 𝑌 ) } ) ) ) | 
						
							| 95 | 93 87 94 | syl2anc | ⊢ ( 𝜑  →  ( 𝐺 : ( 1 ... ( ( 𝑃  −  1 )  /  2 ) ) –1-1→ ( ◡ ( 𝑂 ‘ 𝑇 )  “  { ( 0g ‘ 𝑌 ) } )  ↔  𝐺 : ( 1 ... ( ( 𝑃  −  1 )  /  2 ) ) –1-1-onto→ ( ◡ ( 𝑂 ‘ 𝑇 )  “  { ( 0g ‘ 𝑌 ) } ) ) ) | 
						
							| 96 | 16 95 | mpbid | ⊢ ( 𝜑  →  𝐺 : ( 1 ... ( ( 𝑃  −  1 )  /  2 ) ) –1-1-onto→ ( ◡ ( 𝑂 ‘ 𝑇 )  “  { ( 0g ‘ 𝑌 ) } ) ) | 
						
							| 97 |  | f1ocnv | ⊢ ( 𝐺 : ( 1 ... ( ( 𝑃  −  1 )  /  2 ) ) –1-1-onto→ ( ◡ ( 𝑂 ‘ 𝑇 )  “  { ( 0g ‘ 𝑌 ) } )  →  ◡ 𝐺 : ( ◡ ( 𝑂 ‘ 𝑇 )  “  { ( 0g ‘ 𝑌 ) } ) –1-1-onto→ ( 1 ... ( ( 𝑃  −  1 )  /  2 ) ) ) | 
						
							| 98 |  | f1of | ⊢ ( ◡ 𝐺 : ( ◡ ( 𝑂 ‘ 𝑇 )  “  { ( 0g ‘ 𝑌 ) } ) –1-1-onto→ ( 1 ... ( ( 𝑃  −  1 )  /  2 ) )  →  ◡ 𝐺 : ( ◡ ( 𝑂 ‘ 𝑇 )  “  { ( 0g ‘ 𝑌 ) } ) ⟶ ( 1 ... ( ( 𝑃  −  1 )  /  2 ) ) ) | 
						
							| 99 | 96 97 98 | 3syl | ⊢ ( 𝜑  →  ◡ 𝐺 : ( ◡ ( 𝑂 ‘ 𝑇 )  “  { ( 0g ‘ 𝑌 ) } ) ⟶ ( 1 ... ( ( 𝑃  −  1 )  /  2 ) ) ) | 
						
							| 100 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | lgsqrlem3 | ⊢ ( 𝜑  →  ( 𝐿 ‘ 𝐴 )  ∈  ( ◡ ( 𝑂 ‘ 𝑇 )  “  { ( 0g ‘ 𝑌 ) } ) ) | 
						
							| 101 | 99 100 | ffvelcdmd | ⊢ ( 𝜑  →  ( ◡ 𝐺 ‘ ( 𝐿 ‘ 𝐴 ) )  ∈  ( 1 ... ( ( 𝑃  −  1 )  /  2 ) ) ) | 
						
							| 102 | 101 | elfzelzd | ⊢ ( 𝜑  →  ( ◡ 𝐺 ‘ ( 𝐿 ‘ 𝐴 ) )  ∈  ℤ ) | 
						
							| 103 |  | fvoveq1 | ⊢ ( 𝑥  =  ( ◡ 𝐺 ‘ ( 𝐿 ‘ 𝐴 ) )  →  ( 𝐿 ‘ ( 𝑥 ↑ 2 ) )  =  ( 𝐿 ‘ ( ( ◡ 𝐺 ‘ ( 𝐿 ‘ 𝐴 ) ) ↑ 2 ) ) ) | 
						
							| 104 |  | fvoveq1 | ⊢ ( 𝑦  =  𝑥  →  ( 𝐿 ‘ ( 𝑦 ↑ 2 ) )  =  ( 𝐿 ‘ ( 𝑥 ↑ 2 ) ) ) | 
						
							| 105 | 104 | cbvmptv | ⊢ ( 𝑦  ∈  ( 1 ... ( ( 𝑃  −  1 )  /  2 ) )  ↦  ( 𝐿 ‘ ( 𝑦 ↑ 2 ) ) )  =  ( 𝑥  ∈  ( 1 ... ( ( 𝑃  −  1 )  /  2 ) )  ↦  ( 𝐿 ‘ ( 𝑥 ↑ 2 ) ) ) | 
						
							| 106 | 13 105 | eqtri | ⊢ 𝐺  =  ( 𝑥  ∈  ( 1 ... ( ( 𝑃  −  1 )  /  2 ) )  ↦  ( 𝐿 ‘ ( 𝑥 ↑ 2 ) ) ) | 
						
							| 107 |  | fvex | ⊢ ( 𝐿 ‘ ( ( ◡ 𝐺 ‘ ( 𝐿 ‘ 𝐴 ) ) ↑ 2 ) )  ∈  V | 
						
							| 108 | 103 106 107 | fvmpt | ⊢ ( ( ◡ 𝐺 ‘ ( 𝐿 ‘ 𝐴 ) )  ∈  ( 1 ... ( ( 𝑃  −  1 )  /  2 ) )  →  ( 𝐺 ‘ ( ◡ 𝐺 ‘ ( 𝐿 ‘ 𝐴 ) ) )  =  ( 𝐿 ‘ ( ( ◡ 𝐺 ‘ ( 𝐿 ‘ 𝐴 ) ) ↑ 2 ) ) ) | 
						
							| 109 | 101 108 | syl | ⊢ ( 𝜑  →  ( 𝐺 ‘ ( ◡ 𝐺 ‘ ( 𝐿 ‘ 𝐴 ) ) )  =  ( 𝐿 ‘ ( ( ◡ 𝐺 ‘ ( 𝐿 ‘ 𝐴 ) ) ↑ 2 ) ) ) | 
						
							| 110 |  | f1ocnvfv2 | ⊢ ( ( 𝐺 : ( 1 ... ( ( 𝑃  −  1 )  /  2 ) ) –1-1-onto→ ( ◡ ( 𝑂 ‘ 𝑇 )  “  { ( 0g ‘ 𝑌 ) } )  ∧  ( 𝐿 ‘ 𝐴 )  ∈  ( ◡ ( 𝑂 ‘ 𝑇 )  “  { ( 0g ‘ 𝑌 ) } ) )  →  ( 𝐺 ‘ ( ◡ 𝐺 ‘ ( 𝐿 ‘ 𝐴 ) ) )  =  ( 𝐿 ‘ 𝐴 ) ) | 
						
							| 111 | 96 100 110 | syl2anc | ⊢ ( 𝜑  →  ( 𝐺 ‘ ( ◡ 𝐺 ‘ ( 𝐿 ‘ 𝐴 ) ) )  =  ( 𝐿 ‘ 𝐴 ) ) | 
						
							| 112 | 109 111 | eqtr3d | ⊢ ( 𝜑  →  ( 𝐿 ‘ ( ( ◡ 𝐺 ‘ ( 𝐿 ‘ 𝐴 ) ) ↑ 2 ) )  =  ( 𝐿 ‘ 𝐴 ) ) | 
						
							| 113 |  | prmnn | ⊢ ( 𝑃  ∈  ℙ  →  𝑃  ∈  ℕ ) | 
						
							| 114 | 24 113 | syl | ⊢ ( 𝜑  →  𝑃  ∈  ℕ ) | 
						
							| 115 | 114 | nnnn0d | ⊢ ( 𝜑  →  𝑃  ∈  ℕ0 ) | 
						
							| 116 |  | zsqcl | ⊢ ( ( ◡ 𝐺 ‘ ( 𝐿 ‘ 𝐴 ) )  ∈  ℤ  →  ( ( ◡ 𝐺 ‘ ( 𝐿 ‘ 𝐴 ) ) ↑ 2 )  ∈  ℤ ) | 
						
							| 117 | 102 116 | syl | ⊢ ( 𝜑  →  ( ( ◡ 𝐺 ‘ ( 𝐿 ‘ 𝐴 ) ) ↑ 2 )  ∈  ℤ ) | 
						
							| 118 | 1 11 | zndvds | ⊢ ( ( 𝑃  ∈  ℕ0  ∧  ( ( ◡ 𝐺 ‘ ( 𝐿 ‘ 𝐴 ) ) ↑ 2 )  ∈  ℤ  ∧  𝐴  ∈  ℤ )  →  ( ( 𝐿 ‘ ( ( ◡ 𝐺 ‘ ( 𝐿 ‘ 𝐴 ) ) ↑ 2 ) )  =  ( 𝐿 ‘ 𝐴 )  ↔  𝑃  ∥  ( ( ( ◡ 𝐺 ‘ ( 𝐿 ‘ 𝐴 ) ) ↑ 2 )  −  𝐴 ) ) ) | 
						
							| 119 | 115 117 14 118 | syl3anc | ⊢ ( 𝜑  →  ( ( 𝐿 ‘ ( ( ◡ 𝐺 ‘ ( 𝐿 ‘ 𝐴 ) ) ↑ 2 ) )  =  ( 𝐿 ‘ 𝐴 )  ↔  𝑃  ∥  ( ( ( ◡ 𝐺 ‘ ( 𝐿 ‘ 𝐴 ) ) ↑ 2 )  −  𝐴 ) ) ) | 
						
							| 120 | 112 119 | mpbid | ⊢ ( 𝜑  →  𝑃  ∥  ( ( ( ◡ 𝐺 ‘ ( 𝐿 ‘ 𝐴 ) ) ↑ 2 )  −  𝐴 ) ) | 
						
							| 121 |  | oveq1 | ⊢ ( 𝑥  =  ( ◡ 𝐺 ‘ ( 𝐿 ‘ 𝐴 ) )  →  ( 𝑥 ↑ 2 )  =  ( ( ◡ 𝐺 ‘ ( 𝐿 ‘ 𝐴 ) ) ↑ 2 ) ) | 
						
							| 122 | 121 | oveq1d | ⊢ ( 𝑥  =  ( ◡ 𝐺 ‘ ( 𝐿 ‘ 𝐴 ) )  →  ( ( 𝑥 ↑ 2 )  −  𝐴 )  =  ( ( ( ◡ 𝐺 ‘ ( 𝐿 ‘ 𝐴 ) ) ↑ 2 )  −  𝐴 ) ) | 
						
							| 123 | 122 | breq2d | ⊢ ( 𝑥  =  ( ◡ 𝐺 ‘ ( 𝐿 ‘ 𝐴 ) )  →  ( 𝑃  ∥  ( ( 𝑥 ↑ 2 )  −  𝐴 )  ↔  𝑃  ∥  ( ( ( ◡ 𝐺 ‘ ( 𝐿 ‘ 𝐴 ) ) ↑ 2 )  −  𝐴 ) ) ) | 
						
							| 124 | 123 | rspcev | ⊢ ( ( ( ◡ 𝐺 ‘ ( 𝐿 ‘ 𝐴 ) )  ∈  ℤ  ∧  𝑃  ∥  ( ( ( ◡ 𝐺 ‘ ( 𝐿 ‘ 𝐴 ) ) ↑ 2 )  −  𝐴 ) )  →  ∃ 𝑥  ∈  ℤ 𝑃  ∥  ( ( 𝑥 ↑ 2 )  −  𝐴 ) ) | 
						
							| 125 | 102 120 124 | syl2anc | ⊢ ( 𝜑  →  ∃ 𝑥  ∈  ℤ 𝑃  ∥  ( ( 𝑥 ↑ 2 )  −  𝐴 ) ) |