| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid | ⊢ ( ℤ/nℤ ‘ 𝑃 )  =  ( ℤ/nℤ ‘ 𝑃 ) | 
						
							| 2 |  | eqid | ⊢ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑃 ) )  =  ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑃 ) ) | 
						
							| 3 |  | eqid | ⊢ ( Base ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑃 ) ) )  =  ( Base ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑃 ) ) ) | 
						
							| 4 |  | eqid | ⊢ ( deg1 ‘ ( ℤ/nℤ ‘ 𝑃 ) )  =  ( deg1 ‘ ( ℤ/nℤ ‘ 𝑃 ) ) | 
						
							| 5 |  | eqid | ⊢ ( eval1 ‘ ( ℤ/nℤ ‘ 𝑃 ) )  =  ( eval1 ‘ ( ℤ/nℤ ‘ 𝑃 ) ) | 
						
							| 6 |  | eqid | ⊢ ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑃 ) ) ) )  =  ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑃 ) ) ) ) | 
						
							| 7 |  | eqid | ⊢ ( var1 ‘ ( ℤ/nℤ ‘ 𝑃 ) )  =  ( var1 ‘ ( ℤ/nℤ ‘ 𝑃 ) ) | 
						
							| 8 |  | eqid | ⊢ ( -g ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑃 ) ) )  =  ( -g ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑃 ) ) ) | 
						
							| 9 |  | eqid | ⊢ ( 1r ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑃 ) ) )  =  ( 1r ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑃 ) ) ) | 
						
							| 10 |  | eqid | ⊢ ( ( ( ( 𝑃  −  1 )  /  2 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑃 ) ) ) ) ( var1 ‘ ( ℤ/nℤ ‘ 𝑃 ) ) ) ( -g ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑃 ) ) ) ( 1r ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑃 ) ) ) )  =  ( ( ( ( 𝑃  −  1 )  /  2 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑃 ) ) ) ) ( var1 ‘ ( ℤ/nℤ ‘ 𝑃 ) ) ) ( -g ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑃 ) ) ) ( 1r ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑃 ) ) ) ) | 
						
							| 11 |  | eqid | ⊢ ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑃 ) )  =  ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑃 ) ) | 
						
							| 12 |  | simp2 | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  ( 𝐴  /L  𝑃 )  =  1 )  →  𝑃  ∈  ( ℙ  ∖  { 2 } ) ) | 
						
							| 13 |  | eqid | ⊢ ( 𝑦  ∈  ( 1 ... ( ( 𝑃  −  1 )  /  2 ) )  ↦  ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑃 ) ) ‘ ( 𝑦 ↑ 2 ) ) )  =  ( 𝑦  ∈  ( 1 ... ( ( 𝑃  −  1 )  /  2 ) )  ↦  ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑃 ) ) ‘ ( 𝑦 ↑ 2 ) ) ) | 
						
							| 14 |  | simp1 | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  ( 𝐴  /L  𝑃 )  =  1 )  →  𝐴  ∈  ℤ ) | 
						
							| 15 |  | simp3 | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  ( 𝐴  /L  𝑃 )  =  1 )  →  ( 𝐴  /L  𝑃 )  =  1 ) | 
						
							| 16 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | lgsqrlem4 | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  ( 𝐴  /L  𝑃 )  =  1 )  →  ∃ 𝑥  ∈  ℤ 𝑃  ∥  ( ( 𝑥 ↑ 2 )  −  𝐴 ) ) |