Step |
Hyp |
Ref |
Expression |
1 |
|
simp1 |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑄 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑃 ≠ 𝑄 ) → 𝑃 ∈ ( ℙ ∖ { 2 } ) ) |
2 |
|
simp2 |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑄 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑃 ≠ 𝑄 ) → 𝑄 ∈ ( ℙ ∖ { 2 } ) ) |
3 |
|
simp3 |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑄 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑃 ≠ 𝑄 ) → 𝑃 ≠ 𝑄 ) |
4 |
|
eqid |
⊢ ( ( 𝑃 − 1 ) / 2 ) = ( ( 𝑃 − 1 ) / 2 ) |
5 |
|
eqid |
⊢ ( ( 𝑄 − 1 ) / 2 ) = ( ( 𝑄 − 1 ) / 2 ) |
6 |
|
eleq1w |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 ∈ ( 1 ... ( ( 𝑃 − 1 ) / 2 ) ) ↔ 𝑧 ∈ ( 1 ... ( ( 𝑃 − 1 ) / 2 ) ) ) ) |
7 |
|
eleq1w |
⊢ ( 𝑦 = 𝑤 → ( 𝑦 ∈ ( 1 ... ( ( 𝑄 − 1 ) / 2 ) ) ↔ 𝑤 ∈ ( 1 ... ( ( 𝑄 − 1 ) / 2 ) ) ) ) |
8 |
6 7
|
bi2anan9 |
⊢ ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → ( ( 𝑥 ∈ ( 1 ... ( ( 𝑃 − 1 ) / 2 ) ) ∧ 𝑦 ∈ ( 1 ... ( ( 𝑄 − 1 ) / 2 ) ) ) ↔ ( 𝑧 ∈ ( 1 ... ( ( 𝑃 − 1 ) / 2 ) ) ∧ 𝑤 ∈ ( 1 ... ( ( 𝑄 − 1 ) / 2 ) ) ) ) ) |
9 |
|
oveq1 |
⊢ ( 𝑦 = 𝑤 → ( 𝑦 · 𝑃 ) = ( 𝑤 · 𝑃 ) ) |
10 |
|
oveq1 |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 · 𝑄 ) = ( 𝑧 · 𝑄 ) ) |
11 |
9 10
|
breqan12rd |
⊢ ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → ( ( 𝑦 · 𝑃 ) < ( 𝑥 · 𝑄 ) ↔ ( 𝑤 · 𝑃 ) < ( 𝑧 · 𝑄 ) ) ) |
12 |
8 11
|
anbi12d |
⊢ ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → ( ( ( 𝑥 ∈ ( 1 ... ( ( 𝑃 − 1 ) / 2 ) ) ∧ 𝑦 ∈ ( 1 ... ( ( 𝑄 − 1 ) / 2 ) ) ) ∧ ( 𝑦 · 𝑃 ) < ( 𝑥 · 𝑄 ) ) ↔ ( ( 𝑧 ∈ ( 1 ... ( ( 𝑃 − 1 ) / 2 ) ) ∧ 𝑤 ∈ ( 1 ... ( ( 𝑄 − 1 ) / 2 ) ) ) ∧ ( 𝑤 · 𝑃 ) < ( 𝑧 · 𝑄 ) ) ) ) |
13 |
12
|
cbvopabv |
⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ ( 1 ... ( ( 𝑃 − 1 ) / 2 ) ) ∧ 𝑦 ∈ ( 1 ... ( ( 𝑄 − 1 ) / 2 ) ) ) ∧ ( 𝑦 · 𝑃 ) < ( 𝑥 · 𝑄 ) ) } = { 〈 𝑧 , 𝑤 〉 ∣ ( ( 𝑧 ∈ ( 1 ... ( ( 𝑃 − 1 ) / 2 ) ) ∧ 𝑤 ∈ ( 1 ... ( ( 𝑄 − 1 ) / 2 ) ) ) ∧ ( 𝑤 · 𝑃 ) < ( 𝑧 · 𝑄 ) ) } |
14 |
1 2 3 4 5 13
|
lgsquadlem3 |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑄 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑃 ≠ 𝑄 ) → ( ( 𝑃 /L 𝑄 ) · ( 𝑄 /L 𝑃 ) ) = ( - 1 ↑ ( ( ( 𝑃 − 1 ) / 2 ) · ( ( 𝑄 − 1 ) / 2 ) ) ) ) |