Step |
Hyp |
Ref |
Expression |
1 |
|
simplrl |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀 ) ∧ ( 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) ) ∧ ( 𝑀 gcd 𝑁 ) = 1 ) → 𝑁 ∈ ℕ ) |
2 |
|
nnz |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℤ ) |
3 |
1 2
|
syl |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀 ) ∧ ( 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) ) ∧ ( 𝑀 gcd 𝑁 ) = 1 ) → 𝑁 ∈ ℤ ) |
4 |
|
nnz |
⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℤ ) |
5 |
4
|
ad3antrrr |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀 ) ∧ ( 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) ) ∧ ( 𝑀 gcd 𝑁 ) = 1 ) → 𝑀 ∈ ℤ ) |
6 |
|
lgscl |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝑁 /L 𝑀 ) ∈ ℤ ) |
7 |
3 5 6
|
syl2anc |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀 ) ∧ ( 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) ) ∧ ( 𝑀 gcd 𝑁 ) = 1 ) → ( 𝑁 /L 𝑀 ) ∈ ℤ ) |
8 |
7
|
zred |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀 ) ∧ ( 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) ) ∧ ( 𝑀 gcd 𝑁 ) = 1 ) → ( 𝑁 /L 𝑀 ) ∈ ℝ ) |
9 |
|
absresq |
⊢ ( ( 𝑁 /L 𝑀 ) ∈ ℝ → ( ( abs ‘ ( 𝑁 /L 𝑀 ) ) ↑ 2 ) = ( ( 𝑁 /L 𝑀 ) ↑ 2 ) ) |
10 |
8 9
|
syl |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀 ) ∧ ( 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) ) ∧ ( 𝑀 gcd 𝑁 ) = 1 ) → ( ( abs ‘ ( 𝑁 /L 𝑀 ) ) ↑ 2 ) = ( ( 𝑁 /L 𝑀 ) ↑ 2 ) ) |
11 |
3 5
|
gcdcomd |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀 ) ∧ ( 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) ) ∧ ( 𝑀 gcd 𝑁 ) = 1 ) → ( 𝑁 gcd 𝑀 ) = ( 𝑀 gcd 𝑁 ) ) |
12 |
|
simpr |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀 ) ∧ ( 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) ) ∧ ( 𝑀 gcd 𝑁 ) = 1 ) → ( 𝑀 gcd 𝑁 ) = 1 ) |
13 |
11 12
|
eqtrd |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀 ) ∧ ( 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) ) ∧ ( 𝑀 gcd 𝑁 ) = 1 ) → ( 𝑁 gcd 𝑀 ) = 1 ) |
14 |
|
lgsabs1 |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( ( abs ‘ ( 𝑁 /L 𝑀 ) ) = 1 ↔ ( 𝑁 gcd 𝑀 ) = 1 ) ) |
15 |
3 5 14
|
syl2anc |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀 ) ∧ ( 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) ) ∧ ( 𝑀 gcd 𝑁 ) = 1 ) → ( ( abs ‘ ( 𝑁 /L 𝑀 ) ) = 1 ↔ ( 𝑁 gcd 𝑀 ) = 1 ) ) |
16 |
13 15
|
mpbird |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀 ) ∧ ( 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) ) ∧ ( 𝑀 gcd 𝑁 ) = 1 ) → ( abs ‘ ( 𝑁 /L 𝑀 ) ) = 1 ) |
17 |
16
|
oveq1d |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀 ) ∧ ( 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) ) ∧ ( 𝑀 gcd 𝑁 ) = 1 ) → ( ( abs ‘ ( 𝑁 /L 𝑀 ) ) ↑ 2 ) = ( 1 ↑ 2 ) ) |
18 |
|
sq1 |
⊢ ( 1 ↑ 2 ) = 1 |
19 |
17 18
|
eqtrdi |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀 ) ∧ ( 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) ) ∧ ( 𝑀 gcd 𝑁 ) = 1 ) → ( ( abs ‘ ( 𝑁 /L 𝑀 ) ) ↑ 2 ) = 1 ) |
20 |
7
|
zcnd |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀 ) ∧ ( 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) ) ∧ ( 𝑀 gcd 𝑁 ) = 1 ) → ( 𝑁 /L 𝑀 ) ∈ ℂ ) |
21 |
20
|
sqvald |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀 ) ∧ ( 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) ) ∧ ( 𝑀 gcd 𝑁 ) = 1 ) → ( ( 𝑁 /L 𝑀 ) ↑ 2 ) = ( ( 𝑁 /L 𝑀 ) · ( 𝑁 /L 𝑀 ) ) ) |
22 |
10 19 21
|
3eqtr3d |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀 ) ∧ ( 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) ) ∧ ( 𝑀 gcd 𝑁 ) = 1 ) → 1 = ( ( 𝑁 /L 𝑀 ) · ( 𝑁 /L 𝑀 ) ) ) |
23 |
22
|
oveq2d |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀 ) ∧ ( 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) ) ∧ ( 𝑀 gcd 𝑁 ) = 1 ) → ( ( 𝑀 /L 𝑁 ) · 1 ) = ( ( 𝑀 /L 𝑁 ) · ( ( 𝑁 /L 𝑀 ) · ( 𝑁 /L 𝑀 ) ) ) ) |
24 |
|
lgscl |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 /L 𝑁 ) ∈ ℤ ) |
25 |
5 3 24
|
syl2anc |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀 ) ∧ ( 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) ) ∧ ( 𝑀 gcd 𝑁 ) = 1 ) → ( 𝑀 /L 𝑁 ) ∈ ℤ ) |
26 |
25
|
zcnd |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀 ) ∧ ( 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) ) ∧ ( 𝑀 gcd 𝑁 ) = 1 ) → ( 𝑀 /L 𝑁 ) ∈ ℂ ) |
27 |
26 20 20
|
mulassd |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀 ) ∧ ( 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) ) ∧ ( 𝑀 gcd 𝑁 ) = 1 ) → ( ( ( 𝑀 /L 𝑁 ) · ( 𝑁 /L 𝑀 ) ) · ( 𝑁 /L 𝑀 ) ) = ( ( 𝑀 /L 𝑁 ) · ( ( 𝑁 /L 𝑀 ) · ( 𝑁 /L 𝑀 ) ) ) ) |
28 |
23 27
|
eqtr4d |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀 ) ∧ ( 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) ) ∧ ( 𝑀 gcd 𝑁 ) = 1 ) → ( ( 𝑀 /L 𝑁 ) · 1 ) = ( ( ( 𝑀 /L 𝑁 ) · ( 𝑁 /L 𝑀 ) ) · ( 𝑁 /L 𝑀 ) ) ) |
29 |
26
|
mulid1d |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀 ) ∧ ( 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) ) ∧ ( 𝑀 gcd 𝑁 ) = 1 ) → ( ( 𝑀 /L 𝑁 ) · 1 ) = ( 𝑀 /L 𝑁 ) ) |
30 |
|
simplll |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀 ) ∧ ( 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) ) ∧ ( 𝑀 gcd 𝑁 ) = 1 ) → 𝑀 ∈ ℕ ) |
31 |
|
simpllr |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀 ) ∧ ( 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) ) ∧ ( 𝑀 gcd 𝑁 ) = 1 ) → ¬ 2 ∥ 𝑀 ) |
32 |
|
simplrr |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀 ) ∧ ( 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) ) ∧ ( 𝑀 gcd 𝑁 ) = 1 ) → ¬ 2 ∥ 𝑁 ) |
33 |
30 31 1 32 12
|
lgsquad2 |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀 ) ∧ ( 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) ) ∧ ( 𝑀 gcd 𝑁 ) = 1 ) → ( ( 𝑀 /L 𝑁 ) · ( 𝑁 /L 𝑀 ) ) = ( - 1 ↑ ( ( ( 𝑀 − 1 ) / 2 ) · ( ( 𝑁 − 1 ) / 2 ) ) ) ) |
34 |
33
|
oveq1d |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀 ) ∧ ( 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) ) ∧ ( 𝑀 gcd 𝑁 ) = 1 ) → ( ( ( 𝑀 /L 𝑁 ) · ( 𝑁 /L 𝑀 ) ) · ( 𝑁 /L 𝑀 ) ) = ( ( - 1 ↑ ( ( ( 𝑀 − 1 ) / 2 ) · ( ( 𝑁 − 1 ) / 2 ) ) ) · ( 𝑁 /L 𝑀 ) ) ) |
35 |
28 29 34
|
3eqtr3d |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀 ) ∧ ( 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) ) ∧ ( 𝑀 gcd 𝑁 ) = 1 ) → ( 𝑀 /L 𝑁 ) = ( ( - 1 ↑ ( ( ( 𝑀 − 1 ) / 2 ) · ( ( 𝑁 − 1 ) / 2 ) ) ) · ( 𝑁 /L 𝑀 ) ) ) |
36 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
37 |
36
|
a1i |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀 ) ∧ ( 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) ) ∧ ¬ ( 𝑀 gcd 𝑁 ) = 1 ) → - 1 ∈ ℂ ) |
38 |
|
neg1ne0 |
⊢ - 1 ≠ 0 |
39 |
38
|
a1i |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀 ) ∧ ( 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) ) ∧ ¬ ( 𝑀 gcd 𝑁 ) = 1 ) → - 1 ≠ 0 ) |
40 |
4
|
ad3antrrr |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀 ) ∧ ( 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) ) ∧ ¬ ( 𝑀 gcd 𝑁 ) = 1 ) → 𝑀 ∈ ℤ ) |
41 |
|
simpllr |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀 ) ∧ ( 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) ) ∧ ¬ ( 𝑀 gcd 𝑁 ) = 1 ) → ¬ 2 ∥ 𝑀 ) |
42 |
|
1zzd |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀 ) ∧ ( 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) ) ∧ ¬ ( 𝑀 gcd 𝑁 ) = 1 ) → 1 ∈ ℤ ) |
43 |
|
2prm |
⊢ 2 ∈ ℙ |
44 |
|
nprmdvds1 |
⊢ ( 2 ∈ ℙ → ¬ 2 ∥ 1 ) |
45 |
43 44
|
mp1i |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀 ) ∧ ( 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) ) ∧ ¬ ( 𝑀 gcd 𝑁 ) = 1 ) → ¬ 2 ∥ 1 ) |
46 |
|
omoe |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ ¬ 2 ∥ 𝑀 ) ∧ ( 1 ∈ ℤ ∧ ¬ 2 ∥ 1 ) ) → 2 ∥ ( 𝑀 − 1 ) ) |
47 |
40 41 42 45 46
|
syl22anc |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀 ) ∧ ( 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) ) ∧ ¬ ( 𝑀 gcd 𝑁 ) = 1 ) → 2 ∥ ( 𝑀 − 1 ) ) |
48 |
|
2z |
⊢ 2 ∈ ℤ |
49 |
|
2ne0 |
⊢ 2 ≠ 0 |
50 |
|
peano2zm |
⊢ ( 𝑀 ∈ ℤ → ( 𝑀 − 1 ) ∈ ℤ ) |
51 |
40 50
|
syl |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀 ) ∧ ( 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) ) ∧ ¬ ( 𝑀 gcd 𝑁 ) = 1 ) → ( 𝑀 − 1 ) ∈ ℤ ) |
52 |
|
dvdsval2 |
⊢ ( ( 2 ∈ ℤ ∧ 2 ≠ 0 ∧ ( 𝑀 − 1 ) ∈ ℤ ) → ( 2 ∥ ( 𝑀 − 1 ) ↔ ( ( 𝑀 − 1 ) / 2 ) ∈ ℤ ) ) |
53 |
48 49 51 52
|
mp3an12i |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀 ) ∧ ( 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) ) ∧ ¬ ( 𝑀 gcd 𝑁 ) = 1 ) → ( 2 ∥ ( 𝑀 − 1 ) ↔ ( ( 𝑀 − 1 ) / 2 ) ∈ ℤ ) ) |
54 |
47 53
|
mpbid |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀 ) ∧ ( 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) ) ∧ ¬ ( 𝑀 gcd 𝑁 ) = 1 ) → ( ( 𝑀 − 1 ) / 2 ) ∈ ℤ ) |
55 |
2
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) → 𝑁 ∈ ℤ ) |
56 |
55
|
ad2antlr |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀 ) ∧ ( 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) ) ∧ ¬ ( 𝑀 gcd 𝑁 ) = 1 ) → 𝑁 ∈ ℤ ) |
57 |
|
simplrr |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀 ) ∧ ( 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) ) ∧ ¬ ( 𝑀 gcd 𝑁 ) = 1 ) → ¬ 2 ∥ 𝑁 ) |
58 |
|
omoe |
⊢ ( ( ( 𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁 ) ∧ ( 1 ∈ ℤ ∧ ¬ 2 ∥ 1 ) ) → 2 ∥ ( 𝑁 − 1 ) ) |
59 |
56 57 42 45 58
|
syl22anc |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀 ) ∧ ( 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) ) ∧ ¬ ( 𝑀 gcd 𝑁 ) = 1 ) → 2 ∥ ( 𝑁 − 1 ) ) |
60 |
|
peano2zm |
⊢ ( 𝑁 ∈ ℤ → ( 𝑁 − 1 ) ∈ ℤ ) |
61 |
56 60
|
syl |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀 ) ∧ ( 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) ) ∧ ¬ ( 𝑀 gcd 𝑁 ) = 1 ) → ( 𝑁 − 1 ) ∈ ℤ ) |
62 |
|
dvdsval2 |
⊢ ( ( 2 ∈ ℤ ∧ 2 ≠ 0 ∧ ( 𝑁 − 1 ) ∈ ℤ ) → ( 2 ∥ ( 𝑁 − 1 ) ↔ ( ( 𝑁 − 1 ) / 2 ) ∈ ℤ ) ) |
63 |
48 49 61 62
|
mp3an12i |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀 ) ∧ ( 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) ) ∧ ¬ ( 𝑀 gcd 𝑁 ) = 1 ) → ( 2 ∥ ( 𝑁 − 1 ) ↔ ( ( 𝑁 − 1 ) / 2 ) ∈ ℤ ) ) |
64 |
59 63
|
mpbid |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀 ) ∧ ( 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) ) ∧ ¬ ( 𝑀 gcd 𝑁 ) = 1 ) → ( ( 𝑁 − 1 ) / 2 ) ∈ ℤ ) |
65 |
54 64
|
zmulcld |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀 ) ∧ ( 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) ) ∧ ¬ ( 𝑀 gcd 𝑁 ) = 1 ) → ( ( ( 𝑀 − 1 ) / 2 ) · ( ( 𝑁 − 1 ) / 2 ) ) ∈ ℤ ) |
66 |
37 39 65
|
expclzd |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀 ) ∧ ( 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) ) ∧ ¬ ( 𝑀 gcd 𝑁 ) = 1 ) → ( - 1 ↑ ( ( ( 𝑀 − 1 ) / 2 ) · ( ( 𝑁 − 1 ) / 2 ) ) ) ∈ ℂ ) |
67 |
66
|
mul01d |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀 ) ∧ ( 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) ) ∧ ¬ ( 𝑀 gcd 𝑁 ) = 1 ) → ( ( - 1 ↑ ( ( ( 𝑀 − 1 ) / 2 ) · ( ( 𝑁 − 1 ) / 2 ) ) ) · 0 ) = 0 ) |
68 |
|
lgsne0 |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( ( 𝑁 /L 𝑀 ) ≠ 0 ↔ ( 𝑁 gcd 𝑀 ) = 1 ) ) |
69 |
|
gcdcom |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝑁 gcd 𝑀 ) = ( 𝑀 gcd 𝑁 ) ) |
70 |
69
|
eqeq1d |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( ( 𝑁 gcd 𝑀 ) = 1 ↔ ( 𝑀 gcd 𝑁 ) = 1 ) ) |
71 |
68 70
|
bitrd |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( ( 𝑁 /L 𝑀 ) ≠ 0 ↔ ( 𝑀 gcd 𝑁 ) = 1 ) ) |
72 |
2 4 71
|
syl2anr |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑁 /L 𝑀 ) ≠ 0 ↔ ( 𝑀 gcd 𝑁 ) = 1 ) ) |
73 |
72
|
necon1bbid |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ¬ ( 𝑀 gcd 𝑁 ) = 1 ↔ ( 𝑁 /L 𝑀 ) = 0 ) ) |
74 |
73
|
ad2ant2r |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀 ) ∧ ( 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) ) → ( ¬ ( 𝑀 gcd 𝑁 ) = 1 ↔ ( 𝑁 /L 𝑀 ) = 0 ) ) |
75 |
74
|
biimpa |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀 ) ∧ ( 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) ) ∧ ¬ ( 𝑀 gcd 𝑁 ) = 1 ) → ( 𝑁 /L 𝑀 ) = 0 ) |
76 |
75
|
oveq2d |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀 ) ∧ ( 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) ) ∧ ¬ ( 𝑀 gcd 𝑁 ) = 1 ) → ( ( - 1 ↑ ( ( ( 𝑀 − 1 ) / 2 ) · ( ( 𝑁 − 1 ) / 2 ) ) ) · ( 𝑁 /L 𝑀 ) ) = ( ( - 1 ↑ ( ( ( 𝑀 − 1 ) / 2 ) · ( ( 𝑁 − 1 ) / 2 ) ) ) · 0 ) ) |
77 |
|
lgsne0 |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑀 /L 𝑁 ) ≠ 0 ↔ ( 𝑀 gcd 𝑁 ) = 1 ) ) |
78 |
77
|
necon1bbid |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ¬ ( 𝑀 gcd 𝑁 ) = 1 ↔ ( 𝑀 /L 𝑁 ) = 0 ) ) |
79 |
4 2 78
|
syl2an |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ¬ ( 𝑀 gcd 𝑁 ) = 1 ↔ ( 𝑀 /L 𝑁 ) = 0 ) ) |
80 |
79
|
ad2ant2r |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀 ) ∧ ( 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) ) → ( ¬ ( 𝑀 gcd 𝑁 ) = 1 ↔ ( 𝑀 /L 𝑁 ) = 0 ) ) |
81 |
80
|
biimpa |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀 ) ∧ ( 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) ) ∧ ¬ ( 𝑀 gcd 𝑁 ) = 1 ) → ( 𝑀 /L 𝑁 ) = 0 ) |
82 |
67 76 81
|
3eqtr4rd |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀 ) ∧ ( 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) ) ∧ ¬ ( 𝑀 gcd 𝑁 ) = 1 ) → ( 𝑀 /L 𝑁 ) = ( ( - 1 ↑ ( ( ( 𝑀 − 1 ) / 2 ) · ( ( 𝑁 − 1 ) / 2 ) ) ) · ( 𝑁 /L 𝑀 ) ) ) |
83 |
35 82
|
pm2.61dan |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀 ) ∧ ( 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) ) → ( 𝑀 /L 𝑁 ) = ( ( - 1 ↑ ( ( ( 𝑀 − 1 ) / 2 ) · ( ( 𝑁 − 1 ) / 2 ) ) ) · ( 𝑁 /L 𝑀 ) ) ) |