| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simplrl | ⊢ ( ( ( ( 𝑀  ∈  ℕ  ∧  ¬  2  ∥  𝑀 )  ∧  ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 ) )  ∧  ( 𝑀  gcd  𝑁 )  =  1 )  →  𝑁  ∈  ℕ ) | 
						
							| 2 |  | nnz | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ℤ ) | 
						
							| 3 | 1 2 | syl | ⊢ ( ( ( ( 𝑀  ∈  ℕ  ∧  ¬  2  ∥  𝑀 )  ∧  ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 ) )  ∧  ( 𝑀  gcd  𝑁 )  =  1 )  →  𝑁  ∈  ℤ ) | 
						
							| 4 |  | nnz | ⊢ ( 𝑀  ∈  ℕ  →  𝑀  ∈  ℤ ) | 
						
							| 5 | 4 | ad3antrrr | ⊢ ( ( ( ( 𝑀  ∈  ℕ  ∧  ¬  2  ∥  𝑀 )  ∧  ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 ) )  ∧  ( 𝑀  gcd  𝑁 )  =  1 )  →  𝑀  ∈  ℤ ) | 
						
							| 6 |  | lgscl | ⊢ ( ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℤ )  →  ( 𝑁  /L  𝑀 )  ∈  ℤ ) | 
						
							| 7 | 3 5 6 | syl2anc | ⊢ ( ( ( ( 𝑀  ∈  ℕ  ∧  ¬  2  ∥  𝑀 )  ∧  ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 ) )  ∧  ( 𝑀  gcd  𝑁 )  =  1 )  →  ( 𝑁  /L  𝑀 )  ∈  ℤ ) | 
						
							| 8 | 7 | zred | ⊢ ( ( ( ( 𝑀  ∈  ℕ  ∧  ¬  2  ∥  𝑀 )  ∧  ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 ) )  ∧  ( 𝑀  gcd  𝑁 )  =  1 )  →  ( 𝑁  /L  𝑀 )  ∈  ℝ ) | 
						
							| 9 |  | absresq | ⊢ ( ( 𝑁  /L  𝑀 )  ∈  ℝ  →  ( ( abs ‘ ( 𝑁  /L  𝑀 ) ) ↑ 2 )  =  ( ( 𝑁  /L  𝑀 ) ↑ 2 ) ) | 
						
							| 10 | 8 9 | syl | ⊢ ( ( ( ( 𝑀  ∈  ℕ  ∧  ¬  2  ∥  𝑀 )  ∧  ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 ) )  ∧  ( 𝑀  gcd  𝑁 )  =  1 )  →  ( ( abs ‘ ( 𝑁  /L  𝑀 ) ) ↑ 2 )  =  ( ( 𝑁  /L  𝑀 ) ↑ 2 ) ) | 
						
							| 11 | 3 5 | gcdcomd | ⊢ ( ( ( ( 𝑀  ∈  ℕ  ∧  ¬  2  ∥  𝑀 )  ∧  ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 ) )  ∧  ( 𝑀  gcd  𝑁 )  =  1 )  →  ( 𝑁  gcd  𝑀 )  =  ( 𝑀  gcd  𝑁 ) ) | 
						
							| 12 |  | simpr | ⊢ ( ( ( ( 𝑀  ∈  ℕ  ∧  ¬  2  ∥  𝑀 )  ∧  ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 ) )  ∧  ( 𝑀  gcd  𝑁 )  =  1 )  →  ( 𝑀  gcd  𝑁 )  =  1 ) | 
						
							| 13 | 11 12 | eqtrd | ⊢ ( ( ( ( 𝑀  ∈  ℕ  ∧  ¬  2  ∥  𝑀 )  ∧  ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 ) )  ∧  ( 𝑀  gcd  𝑁 )  =  1 )  →  ( 𝑁  gcd  𝑀 )  =  1 ) | 
						
							| 14 |  | lgsabs1 | ⊢ ( ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℤ )  →  ( ( abs ‘ ( 𝑁  /L  𝑀 ) )  =  1  ↔  ( 𝑁  gcd  𝑀 )  =  1 ) ) | 
						
							| 15 | 3 5 14 | syl2anc | ⊢ ( ( ( ( 𝑀  ∈  ℕ  ∧  ¬  2  ∥  𝑀 )  ∧  ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 ) )  ∧  ( 𝑀  gcd  𝑁 )  =  1 )  →  ( ( abs ‘ ( 𝑁  /L  𝑀 ) )  =  1  ↔  ( 𝑁  gcd  𝑀 )  =  1 ) ) | 
						
							| 16 | 13 15 | mpbird | ⊢ ( ( ( ( 𝑀  ∈  ℕ  ∧  ¬  2  ∥  𝑀 )  ∧  ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 ) )  ∧  ( 𝑀  gcd  𝑁 )  =  1 )  →  ( abs ‘ ( 𝑁  /L  𝑀 ) )  =  1 ) | 
						
							| 17 | 16 | oveq1d | ⊢ ( ( ( ( 𝑀  ∈  ℕ  ∧  ¬  2  ∥  𝑀 )  ∧  ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 ) )  ∧  ( 𝑀  gcd  𝑁 )  =  1 )  →  ( ( abs ‘ ( 𝑁  /L  𝑀 ) ) ↑ 2 )  =  ( 1 ↑ 2 ) ) | 
						
							| 18 |  | sq1 | ⊢ ( 1 ↑ 2 )  =  1 | 
						
							| 19 | 17 18 | eqtrdi | ⊢ ( ( ( ( 𝑀  ∈  ℕ  ∧  ¬  2  ∥  𝑀 )  ∧  ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 ) )  ∧  ( 𝑀  gcd  𝑁 )  =  1 )  →  ( ( abs ‘ ( 𝑁  /L  𝑀 ) ) ↑ 2 )  =  1 ) | 
						
							| 20 | 7 | zcnd | ⊢ ( ( ( ( 𝑀  ∈  ℕ  ∧  ¬  2  ∥  𝑀 )  ∧  ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 ) )  ∧  ( 𝑀  gcd  𝑁 )  =  1 )  →  ( 𝑁  /L  𝑀 )  ∈  ℂ ) | 
						
							| 21 | 20 | sqvald | ⊢ ( ( ( ( 𝑀  ∈  ℕ  ∧  ¬  2  ∥  𝑀 )  ∧  ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 ) )  ∧  ( 𝑀  gcd  𝑁 )  =  1 )  →  ( ( 𝑁  /L  𝑀 ) ↑ 2 )  =  ( ( 𝑁  /L  𝑀 )  ·  ( 𝑁  /L  𝑀 ) ) ) | 
						
							| 22 | 10 19 21 | 3eqtr3d | ⊢ ( ( ( ( 𝑀  ∈  ℕ  ∧  ¬  2  ∥  𝑀 )  ∧  ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 ) )  ∧  ( 𝑀  gcd  𝑁 )  =  1 )  →  1  =  ( ( 𝑁  /L  𝑀 )  ·  ( 𝑁  /L  𝑀 ) ) ) | 
						
							| 23 | 22 | oveq2d | ⊢ ( ( ( ( 𝑀  ∈  ℕ  ∧  ¬  2  ∥  𝑀 )  ∧  ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 ) )  ∧  ( 𝑀  gcd  𝑁 )  =  1 )  →  ( ( 𝑀  /L  𝑁 )  ·  1 )  =  ( ( 𝑀  /L  𝑁 )  ·  ( ( 𝑁  /L  𝑀 )  ·  ( 𝑁  /L  𝑀 ) ) ) ) | 
						
							| 24 |  | lgscl | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝑀  /L  𝑁 )  ∈  ℤ ) | 
						
							| 25 | 5 3 24 | syl2anc | ⊢ ( ( ( ( 𝑀  ∈  ℕ  ∧  ¬  2  ∥  𝑀 )  ∧  ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 ) )  ∧  ( 𝑀  gcd  𝑁 )  =  1 )  →  ( 𝑀  /L  𝑁 )  ∈  ℤ ) | 
						
							| 26 | 25 | zcnd | ⊢ ( ( ( ( 𝑀  ∈  ℕ  ∧  ¬  2  ∥  𝑀 )  ∧  ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 ) )  ∧  ( 𝑀  gcd  𝑁 )  =  1 )  →  ( 𝑀  /L  𝑁 )  ∈  ℂ ) | 
						
							| 27 | 26 20 20 | mulassd | ⊢ ( ( ( ( 𝑀  ∈  ℕ  ∧  ¬  2  ∥  𝑀 )  ∧  ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 ) )  ∧  ( 𝑀  gcd  𝑁 )  =  1 )  →  ( ( ( 𝑀  /L  𝑁 )  ·  ( 𝑁  /L  𝑀 ) )  ·  ( 𝑁  /L  𝑀 ) )  =  ( ( 𝑀  /L  𝑁 )  ·  ( ( 𝑁  /L  𝑀 )  ·  ( 𝑁  /L  𝑀 ) ) ) ) | 
						
							| 28 | 23 27 | eqtr4d | ⊢ ( ( ( ( 𝑀  ∈  ℕ  ∧  ¬  2  ∥  𝑀 )  ∧  ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 ) )  ∧  ( 𝑀  gcd  𝑁 )  =  1 )  →  ( ( 𝑀  /L  𝑁 )  ·  1 )  =  ( ( ( 𝑀  /L  𝑁 )  ·  ( 𝑁  /L  𝑀 ) )  ·  ( 𝑁  /L  𝑀 ) ) ) | 
						
							| 29 | 26 | mulridd | ⊢ ( ( ( ( 𝑀  ∈  ℕ  ∧  ¬  2  ∥  𝑀 )  ∧  ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 ) )  ∧  ( 𝑀  gcd  𝑁 )  =  1 )  →  ( ( 𝑀  /L  𝑁 )  ·  1 )  =  ( 𝑀  /L  𝑁 ) ) | 
						
							| 30 |  | simplll | ⊢ ( ( ( ( 𝑀  ∈  ℕ  ∧  ¬  2  ∥  𝑀 )  ∧  ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 ) )  ∧  ( 𝑀  gcd  𝑁 )  =  1 )  →  𝑀  ∈  ℕ ) | 
						
							| 31 |  | simpllr | ⊢ ( ( ( ( 𝑀  ∈  ℕ  ∧  ¬  2  ∥  𝑀 )  ∧  ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 ) )  ∧  ( 𝑀  gcd  𝑁 )  =  1 )  →  ¬  2  ∥  𝑀 ) | 
						
							| 32 |  | simplrr | ⊢ ( ( ( ( 𝑀  ∈  ℕ  ∧  ¬  2  ∥  𝑀 )  ∧  ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 ) )  ∧  ( 𝑀  gcd  𝑁 )  =  1 )  →  ¬  2  ∥  𝑁 ) | 
						
							| 33 | 30 31 1 32 12 | lgsquad2 | ⊢ ( ( ( ( 𝑀  ∈  ℕ  ∧  ¬  2  ∥  𝑀 )  ∧  ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 ) )  ∧  ( 𝑀  gcd  𝑁 )  =  1 )  →  ( ( 𝑀  /L  𝑁 )  ·  ( 𝑁  /L  𝑀 ) )  =  ( - 1 ↑ ( ( ( 𝑀  −  1 )  /  2 )  ·  ( ( 𝑁  −  1 )  /  2 ) ) ) ) | 
						
							| 34 | 33 | oveq1d | ⊢ ( ( ( ( 𝑀  ∈  ℕ  ∧  ¬  2  ∥  𝑀 )  ∧  ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 ) )  ∧  ( 𝑀  gcd  𝑁 )  =  1 )  →  ( ( ( 𝑀  /L  𝑁 )  ·  ( 𝑁  /L  𝑀 ) )  ·  ( 𝑁  /L  𝑀 ) )  =  ( ( - 1 ↑ ( ( ( 𝑀  −  1 )  /  2 )  ·  ( ( 𝑁  −  1 )  /  2 ) ) )  ·  ( 𝑁  /L  𝑀 ) ) ) | 
						
							| 35 | 28 29 34 | 3eqtr3d | ⊢ ( ( ( ( 𝑀  ∈  ℕ  ∧  ¬  2  ∥  𝑀 )  ∧  ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 ) )  ∧  ( 𝑀  gcd  𝑁 )  =  1 )  →  ( 𝑀  /L  𝑁 )  =  ( ( - 1 ↑ ( ( ( 𝑀  −  1 )  /  2 )  ·  ( ( 𝑁  −  1 )  /  2 ) ) )  ·  ( 𝑁  /L  𝑀 ) ) ) | 
						
							| 36 |  | neg1cn | ⊢ - 1  ∈  ℂ | 
						
							| 37 | 36 | a1i | ⊢ ( ( ( ( 𝑀  ∈  ℕ  ∧  ¬  2  ∥  𝑀 )  ∧  ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 ) )  ∧  ¬  ( 𝑀  gcd  𝑁 )  =  1 )  →  - 1  ∈  ℂ ) | 
						
							| 38 |  | neg1ne0 | ⊢ - 1  ≠  0 | 
						
							| 39 | 38 | a1i | ⊢ ( ( ( ( 𝑀  ∈  ℕ  ∧  ¬  2  ∥  𝑀 )  ∧  ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 ) )  ∧  ¬  ( 𝑀  gcd  𝑁 )  =  1 )  →  - 1  ≠  0 ) | 
						
							| 40 | 4 | ad3antrrr | ⊢ ( ( ( ( 𝑀  ∈  ℕ  ∧  ¬  2  ∥  𝑀 )  ∧  ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 ) )  ∧  ¬  ( 𝑀  gcd  𝑁 )  =  1 )  →  𝑀  ∈  ℤ ) | 
						
							| 41 |  | simpllr | ⊢ ( ( ( ( 𝑀  ∈  ℕ  ∧  ¬  2  ∥  𝑀 )  ∧  ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 ) )  ∧  ¬  ( 𝑀  gcd  𝑁 )  =  1 )  →  ¬  2  ∥  𝑀 ) | 
						
							| 42 |  | 1zzd | ⊢ ( ( ( ( 𝑀  ∈  ℕ  ∧  ¬  2  ∥  𝑀 )  ∧  ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 ) )  ∧  ¬  ( 𝑀  gcd  𝑁 )  =  1 )  →  1  ∈  ℤ ) | 
						
							| 43 |  | 2prm | ⊢ 2  ∈  ℙ | 
						
							| 44 |  | nprmdvds1 | ⊢ ( 2  ∈  ℙ  →  ¬  2  ∥  1 ) | 
						
							| 45 | 43 44 | mp1i | ⊢ ( ( ( ( 𝑀  ∈  ℕ  ∧  ¬  2  ∥  𝑀 )  ∧  ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 ) )  ∧  ¬  ( 𝑀  gcd  𝑁 )  =  1 )  →  ¬  2  ∥  1 ) | 
						
							| 46 |  | omoe | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  ¬  2  ∥  𝑀 )  ∧  ( 1  ∈  ℤ  ∧  ¬  2  ∥  1 ) )  →  2  ∥  ( 𝑀  −  1 ) ) | 
						
							| 47 | 40 41 42 45 46 | syl22anc | ⊢ ( ( ( ( 𝑀  ∈  ℕ  ∧  ¬  2  ∥  𝑀 )  ∧  ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 ) )  ∧  ¬  ( 𝑀  gcd  𝑁 )  =  1 )  →  2  ∥  ( 𝑀  −  1 ) ) | 
						
							| 48 |  | 2z | ⊢ 2  ∈  ℤ | 
						
							| 49 |  | 2ne0 | ⊢ 2  ≠  0 | 
						
							| 50 |  | peano2zm | ⊢ ( 𝑀  ∈  ℤ  →  ( 𝑀  −  1 )  ∈  ℤ ) | 
						
							| 51 | 40 50 | syl | ⊢ ( ( ( ( 𝑀  ∈  ℕ  ∧  ¬  2  ∥  𝑀 )  ∧  ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 ) )  ∧  ¬  ( 𝑀  gcd  𝑁 )  =  1 )  →  ( 𝑀  −  1 )  ∈  ℤ ) | 
						
							| 52 |  | dvdsval2 | ⊢ ( ( 2  ∈  ℤ  ∧  2  ≠  0  ∧  ( 𝑀  −  1 )  ∈  ℤ )  →  ( 2  ∥  ( 𝑀  −  1 )  ↔  ( ( 𝑀  −  1 )  /  2 )  ∈  ℤ ) ) | 
						
							| 53 | 48 49 51 52 | mp3an12i | ⊢ ( ( ( ( 𝑀  ∈  ℕ  ∧  ¬  2  ∥  𝑀 )  ∧  ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 ) )  ∧  ¬  ( 𝑀  gcd  𝑁 )  =  1 )  →  ( 2  ∥  ( 𝑀  −  1 )  ↔  ( ( 𝑀  −  1 )  /  2 )  ∈  ℤ ) ) | 
						
							| 54 | 47 53 | mpbid | ⊢ ( ( ( ( 𝑀  ∈  ℕ  ∧  ¬  2  ∥  𝑀 )  ∧  ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 ) )  ∧  ¬  ( 𝑀  gcd  𝑁 )  =  1 )  →  ( ( 𝑀  −  1 )  /  2 )  ∈  ℤ ) | 
						
							| 55 | 2 | adantr | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 )  →  𝑁  ∈  ℤ ) | 
						
							| 56 | 55 | ad2antlr | ⊢ ( ( ( ( 𝑀  ∈  ℕ  ∧  ¬  2  ∥  𝑀 )  ∧  ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 ) )  ∧  ¬  ( 𝑀  gcd  𝑁 )  =  1 )  →  𝑁  ∈  ℤ ) | 
						
							| 57 |  | simplrr | ⊢ ( ( ( ( 𝑀  ∈  ℕ  ∧  ¬  2  ∥  𝑀 )  ∧  ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 ) )  ∧  ¬  ( 𝑀  gcd  𝑁 )  =  1 )  →  ¬  2  ∥  𝑁 ) | 
						
							| 58 |  | omoe | ⊢ ( ( ( 𝑁  ∈  ℤ  ∧  ¬  2  ∥  𝑁 )  ∧  ( 1  ∈  ℤ  ∧  ¬  2  ∥  1 ) )  →  2  ∥  ( 𝑁  −  1 ) ) | 
						
							| 59 | 56 57 42 45 58 | syl22anc | ⊢ ( ( ( ( 𝑀  ∈  ℕ  ∧  ¬  2  ∥  𝑀 )  ∧  ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 ) )  ∧  ¬  ( 𝑀  gcd  𝑁 )  =  1 )  →  2  ∥  ( 𝑁  −  1 ) ) | 
						
							| 60 |  | peano2zm | ⊢ ( 𝑁  ∈  ℤ  →  ( 𝑁  −  1 )  ∈  ℤ ) | 
						
							| 61 | 56 60 | syl | ⊢ ( ( ( ( 𝑀  ∈  ℕ  ∧  ¬  2  ∥  𝑀 )  ∧  ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 ) )  ∧  ¬  ( 𝑀  gcd  𝑁 )  =  1 )  →  ( 𝑁  −  1 )  ∈  ℤ ) | 
						
							| 62 |  | dvdsval2 | ⊢ ( ( 2  ∈  ℤ  ∧  2  ≠  0  ∧  ( 𝑁  −  1 )  ∈  ℤ )  →  ( 2  ∥  ( 𝑁  −  1 )  ↔  ( ( 𝑁  −  1 )  /  2 )  ∈  ℤ ) ) | 
						
							| 63 | 48 49 61 62 | mp3an12i | ⊢ ( ( ( ( 𝑀  ∈  ℕ  ∧  ¬  2  ∥  𝑀 )  ∧  ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 ) )  ∧  ¬  ( 𝑀  gcd  𝑁 )  =  1 )  →  ( 2  ∥  ( 𝑁  −  1 )  ↔  ( ( 𝑁  −  1 )  /  2 )  ∈  ℤ ) ) | 
						
							| 64 | 59 63 | mpbid | ⊢ ( ( ( ( 𝑀  ∈  ℕ  ∧  ¬  2  ∥  𝑀 )  ∧  ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 ) )  ∧  ¬  ( 𝑀  gcd  𝑁 )  =  1 )  →  ( ( 𝑁  −  1 )  /  2 )  ∈  ℤ ) | 
						
							| 65 | 54 64 | zmulcld | ⊢ ( ( ( ( 𝑀  ∈  ℕ  ∧  ¬  2  ∥  𝑀 )  ∧  ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 ) )  ∧  ¬  ( 𝑀  gcd  𝑁 )  =  1 )  →  ( ( ( 𝑀  −  1 )  /  2 )  ·  ( ( 𝑁  −  1 )  /  2 ) )  ∈  ℤ ) | 
						
							| 66 | 37 39 65 | expclzd | ⊢ ( ( ( ( 𝑀  ∈  ℕ  ∧  ¬  2  ∥  𝑀 )  ∧  ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 ) )  ∧  ¬  ( 𝑀  gcd  𝑁 )  =  1 )  →  ( - 1 ↑ ( ( ( 𝑀  −  1 )  /  2 )  ·  ( ( 𝑁  −  1 )  /  2 ) ) )  ∈  ℂ ) | 
						
							| 67 | 66 | mul01d | ⊢ ( ( ( ( 𝑀  ∈  ℕ  ∧  ¬  2  ∥  𝑀 )  ∧  ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 ) )  ∧  ¬  ( 𝑀  gcd  𝑁 )  =  1 )  →  ( ( - 1 ↑ ( ( ( 𝑀  −  1 )  /  2 )  ·  ( ( 𝑁  −  1 )  /  2 ) ) )  ·  0 )  =  0 ) | 
						
							| 68 |  | lgsne0 | ⊢ ( ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℤ )  →  ( ( 𝑁  /L  𝑀 )  ≠  0  ↔  ( 𝑁  gcd  𝑀 )  =  1 ) ) | 
						
							| 69 |  | gcdcom | ⊢ ( ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℤ )  →  ( 𝑁  gcd  𝑀 )  =  ( 𝑀  gcd  𝑁 ) ) | 
						
							| 70 | 69 | eqeq1d | ⊢ ( ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℤ )  →  ( ( 𝑁  gcd  𝑀 )  =  1  ↔  ( 𝑀  gcd  𝑁 )  =  1 ) ) | 
						
							| 71 | 68 70 | bitrd | ⊢ ( ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℤ )  →  ( ( 𝑁  /L  𝑀 )  ≠  0  ↔  ( 𝑀  gcd  𝑁 )  =  1 ) ) | 
						
							| 72 | 2 4 71 | syl2anr | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( ( 𝑁  /L  𝑀 )  ≠  0  ↔  ( 𝑀  gcd  𝑁 )  =  1 ) ) | 
						
							| 73 | 72 | necon1bbid | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( ¬  ( 𝑀  gcd  𝑁 )  =  1  ↔  ( 𝑁  /L  𝑀 )  =  0 ) ) | 
						
							| 74 | 73 | ad2ant2r | ⊢ ( ( ( 𝑀  ∈  ℕ  ∧  ¬  2  ∥  𝑀 )  ∧  ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 ) )  →  ( ¬  ( 𝑀  gcd  𝑁 )  =  1  ↔  ( 𝑁  /L  𝑀 )  =  0 ) ) | 
						
							| 75 | 74 | biimpa | ⊢ ( ( ( ( 𝑀  ∈  ℕ  ∧  ¬  2  ∥  𝑀 )  ∧  ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 ) )  ∧  ¬  ( 𝑀  gcd  𝑁 )  =  1 )  →  ( 𝑁  /L  𝑀 )  =  0 ) | 
						
							| 76 | 75 | oveq2d | ⊢ ( ( ( ( 𝑀  ∈  ℕ  ∧  ¬  2  ∥  𝑀 )  ∧  ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 ) )  ∧  ¬  ( 𝑀  gcd  𝑁 )  =  1 )  →  ( ( - 1 ↑ ( ( ( 𝑀  −  1 )  /  2 )  ·  ( ( 𝑁  −  1 )  /  2 ) ) )  ·  ( 𝑁  /L  𝑀 ) )  =  ( ( - 1 ↑ ( ( ( 𝑀  −  1 )  /  2 )  ·  ( ( 𝑁  −  1 )  /  2 ) ) )  ·  0 ) ) | 
						
							| 77 |  | lgsne0 | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( ( 𝑀  /L  𝑁 )  ≠  0  ↔  ( 𝑀  gcd  𝑁 )  =  1 ) ) | 
						
							| 78 | 77 | necon1bbid | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( ¬  ( 𝑀  gcd  𝑁 )  =  1  ↔  ( 𝑀  /L  𝑁 )  =  0 ) ) | 
						
							| 79 | 4 2 78 | syl2an | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( ¬  ( 𝑀  gcd  𝑁 )  =  1  ↔  ( 𝑀  /L  𝑁 )  =  0 ) ) | 
						
							| 80 | 79 | ad2ant2r | ⊢ ( ( ( 𝑀  ∈  ℕ  ∧  ¬  2  ∥  𝑀 )  ∧  ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 ) )  →  ( ¬  ( 𝑀  gcd  𝑁 )  =  1  ↔  ( 𝑀  /L  𝑁 )  =  0 ) ) | 
						
							| 81 | 80 | biimpa | ⊢ ( ( ( ( 𝑀  ∈  ℕ  ∧  ¬  2  ∥  𝑀 )  ∧  ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 ) )  ∧  ¬  ( 𝑀  gcd  𝑁 )  =  1 )  →  ( 𝑀  /L  𝑁 )  =  0 ) | 
						
							| 82 | 67 76 81 | 3eqtr4rd | ⊢ ( ( ( ( 𝑀  ∈  ℕ  ∧  ¬  2  ∥  𝑀 )  ∧  ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 ) )  ∧  ¬  ( 𝑀  gcd  𝑁 )  =  1 )  →  ( 𝑀  /L  𝑁 )  =  ( ( - 1 ↑ ( ( ( 𝑀  −  1 )  /  2 )  ·  ( ( 𝑁  −  1 )  /  2 ) ) )  ·  ( 𝑁  /L  𝑀 ) ) ) | 
						
							| 83 | 35 82 | pm2.61dan | ⊢ ( ( ( 𝑀  ∈  ℕ  ∧  ¬  2  ∥  𝑀 )  ∧  ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 ) )  →  ( 𝑀  /L  𝑁 )  =  ( ( - 1 ↑ ( ( ( 𝑀  −  1 )  /  2 )  ·  ( ( 𝑁  −  1 )  /  2 ) ) )  ·  ( 𝑁  /L  𝑀 ) ) ) |