| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lgseisen.1 | ⊢ ( 𝜑  →  𝑃  ∈  ( ℙ  ∖  { 2 } ) ) | 
						
							| 2 |  | lgseisen.2 | ⊢ ( 𝜑  →  𝑄  ∈  ( ℙ  ∖  { 2 } ) ) | 
						
							| 3 |  | lgseisen.3 | ⊢ ( 𝜑  →  𝑃  ≠  𝑄 ) | 
						
							| 4 |  | lgsquad.4 | ⊢ 𝑀  =  ( ( 𝑃  −  1 )  /  2 ) | 
						
							| 5 |  | lgsquad.5 | ⊢ 𝑁  =  ( ( 𝑄  −  1 )  /  2 ) | 
						
							| 6 |  | lgsquad.6 | ⊢ 𝑆  =  { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ∈  ( 1 ... 𝑀 )  ∧  𝑦  ∈  ( 1 ... 𝑁 ) )  ∧  ( 𝑦  ·  𝑃 )  <  ( 𝑥  ·  𝑄 ) ) } | 
						
							| 7 |  | neg1cn | ⊢ - 1  ∈  ℂ | 
						
							| 8 | 7 | a1i | ⊢ ( 𝜑  →  - 1  ∈  ℂ ) | 
						
							| 9 |  | neg1ne0 | ⊢ - 1  ≠  0 | 
						
							| 10 | 9 | a1i | ⊢ ( 𝜑  →  - 1  ≠  0 ) | 
						
							| 11 |  | fzfid | ⊢ ( 𝜑  →  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 )  ∈  Fin ) | 
						
							| 12 | 2 | gausslemma2dlem0a | ⊢ ( 𝜑  →  𝑄  ∈  ℕ ) | 
						
							| 13 | 12 | nnred | ⊢ ( 𝜑  →  𝑄  ∈  ℝ ) | 
						
							| 14 | 1 | gausslemma2dlem0a | ⊢ ( 𝜑  →  𝑃  ∈  ℕ ) | 
						
							| 15 | 13 14 | nndivred | ⊢ ( 𝜑  →  ( 𝑄  /  𝑃 )  ∈  ℝ ) | 
						
							| 16 | 15 | adantr | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  ( 𝑄  /  𝑃 )  ∈  ℝ ) | 
						
							| 17 |  | 2z | ⊢ 2  ∈  ℤ | 
						
							| 18 |  | elfzelz | ⊢ ( 𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 )  →  𝑢  ∈  ℤ ) | 
						
							| 19 | 18 | adantl | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  𝑢  ∈  ℤ ) | 
						
							| 20 |  | zmulcl | ⊢ ( ( 2  ∈  ℤ  ∧  𝑢  ∈  ℤ )  →  ( 2  ·  𝑢 )  ∈  ℤ ) | 
						
							| 21 | 17 19 20 | sylancr | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  ( 2  ·  𝑢 )  ∈  ℤ ) | 
						
							| 22 | 21 | zred | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  ( 2  ·  𝑢 )  ∈  ℝ ) | 
						
							| 23 | 16 22 | remulcld | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) )  ∈  ℝ ) | 
						
							| 24 | 23 | flcld | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) )  ∈  ℤ ) | 
						
							| 25 | 11 24 | fsumzcl | ⊢ ( 𝜑  →  Σ 𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) )  ∈  ℤ ) | 
						
							| 26 | 8 10 25 | expclzd | ⊢ ( 𝜑  →  ( - 1 ↑ Σ 𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) )  ∈  ℂ ) | 
						
							| 27 |  | fzfid | ⊢ ( 𝜑  →  ( 1 ... 𝑀 )  ∈  Fin ) | 
						
							| 28 |  | fzfid | ⊢ ( 𝜑  →  ( 1 ... 𝑁 )  ∈  Fin ) | 
						
							| 29 |  | xpfi | ⊢ ( ( ( 1 ... 𝑀 )  ∈  Fin  ∧  ( 1 ... 𝑁 )  ∈  Fin )  →  ( ( 1 ... 𝑀 )  ×  ( 1 ... 𝑁 ) )  ∈  Fin ) | 
						
							| 30 | 27 28 29 | syl2anc | ⊢ ( 𝜑  →  ( ( 1 ... 𝑀 )  ×  ( 1 ... 𝑁 ) )  ∈  Fin ) | 
						
							| 31 |  | opabssxp | ⊢ { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ∈  ( 1 ... 𝑀 )  ∧  𝑦  ∈  ( 1 ... 𝑁 ) )  ∧  ( 𝑦  ·  𝑃 )  <  ( 𝑥  ·  𝑄 ) ) }  ⊆  ( ( 1 ... 𝑀 )  ×  ( 1 ... 𝑁 ) ) | 
						
							| 32 | 6 31 | eqsstri | ⊢ 𝑆  ⊆  ( ( 1 ... 𝑀 )  ×  ( 1 ... 𝑁 ) ) | 
						
							| 33 |  | ssfi | ⊢ ( ( ( ( 1 ... 𝑀 )  ×  ( 1 ... 𝑁 ) )  ∈  Fin  ∧  𝑆  ⊆  ( ( 1 ... 𝑀 )  ×  ( 1 ... 𝑁 ) ) )  →  𝑆  ∈  Fin ) | 
						
							| 34 | 30 32 33 | sylancl | ⊢ ( 𝜑  →  𝑆  ∈  Fin ) | 
						
							| 35 |  | ssrab2 | ⊢ { 𝑧  ∈  𝑆  ∣  ¬  2  ∥  ( 1st  ‘ 𝑧 ) }  ⊆  𝑆 | 
						
							| 36 |  | ssfi | ⊢ ( ( 𝑆  ∈  Fin  ∧  { 𝑧  ∈  𝑆  ∣  ¬  2  ∥  ( 1st  ‘ 𝑧 ) }  ⊆  𝑆 )  →  { 𝑧  ∈  𝑆  ∣  ¬  2  ∥  ( 1st  ‘ 𝑧 ) }  ∈  Fin ) | 
						
							| 37 | 34 35 36 | sylancl | ⊢ ( 𝜑  →  { 𝑧  ∈  𝑆  ∣  ¬  2  ∥  ( 1st  ‘ 𝑧 ) }  ∈  Fin ) | 
						
							| 38 |  | hashcl | ⊢ ( { 𝑧  ∈  𝑆  ∣  ¬  2  ∥  ( 1st  ‘ 𝑧 ) }  ∈  Fin  →  ( ♯ ‘ { 𝑧  ∈  𝑆  ∣  ¬  2  ∥  ( 1st  ‘ 𝑧 ) } )  ∈  ℕ0 ) | 
						
							| 39 | 37 38 | syl | ⊢ ( 𝜑  →  ( ♯ ‘ { 𝑧  ∈  𝑆  ∣  ¬  2  ∥  ( 1st  ‘ 𝑧 ) } )  ∈  ℕ0 ) | 
						
							| 40 |  | expcl | ⊢ ( ( - 1  ∈  ℂ  ∧  ( ♯ ‘ { 𝑧  ∈  𝑆  ∣  ¬  2  ∥  ( 1st  ‘ 𝑧 ) } )  ∈  ℕ0 )  →  ( - 1 ↑ ( ♯ ‘ { 𝑧  ∈  𝑆  ∣  ¬  2  ∥  ( 1st  ‘ 𝑧 ) } ) )  ∈  ℂ ) | 
						
							| 41 | 7 39 40 | sylancr | ⊢ ( 𝜑  →  ( - 1 ↑ ( ♯ ‘ { 𝑧  ∈  𝑆  ∣  ¬  2  ∥  ( 1st  ‘ 𝑧 ) } ) )  ∈  ℂ ) | 
						
							| 42 | 39 | nn0zd | ⊢ ( 𝜑  →  ( ♯ ‘ { 𝑧  ∈  𝑆  ∣  ¬  2  ∥  ( 1st  ‘ 𝑧 ) } )  ∈  ℤ ) | 
						
							| 43 | 8 10 42 | expne0d | ⊢ ( 𝜑  →  ( - 1 ↑ ( ♯ ‘ { 𝑧  ∈  𝑆  ∣  ¬  2  ∥  ( 1st  ‘ 𝑧 ) } ) )  ≠  0 ) | 
						
							| 44 | 41 43 | recidd | ⊢ ( 𝜑  →  ( ( - 1 ↑ ( ♯ ‘ { 𝑧  ∈  𝑆  ∣  ¬  2  ∥  ( 1st  ‘ 𝑧 ) } ) )  ·  ( 1  /  ( - 1 ↑ ( ♯ ‘ { 𝑧  ∈  𝑆  ∣  ¬  2  ∥  ( 1st  ‘ 𝑧 ) } ) ) ) )  =  1 ) | 
						
							| 45 |  | 1div1e1 | ⊢ ( 1  /  1 )  =  1 | 
						
							| 46 | 45 | negeqi | ⊢ - ( 1  /  1 )  =  - 1 | 
						
							| 47 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 48 |  | ax-1ne0 | ⊢ 1  ≠  0 | 
						
							| 49 |  | divneg2 | ⊢ ( ( 1  ∈  ℂ  ∧  1  ∈  ℂ  ∧  1  ≠  0 )  →  - ( 1  /  1 )  =  ( 1  /  - 1 ) ) | 
						
							| 50 | 47 47 48 49 | mp3an | ⊢ - ( 1  /  1 )  =  ( 1  /  - 1 ) | 
						
							| 51 | 46 50 | eqtr3i | ⊢ - 1  =  ( 1  /  - 1 ) | 
						
							| 52 | 51 | oveq1i | ⊢ ( - 1 ↑ ( ♯ ‘ { 𝑧  ∈  𝑆  ∣  ¬  2  ∥  ( 1st  ‘ 𝑧 ) } ) )  =  ( ( 1  /  - 1 ) ↑ ( ♯ ‘ { 𝑧  ∈  𝑆  ∣  ¬  2  ∥  ( 1st  ‘ 𝑧 ) } ) ) | 
						
							| 53 | 8 10 42 | exprecd | ⊢ ( 𝜑  →  ( ( 1  /  - 1 ) ↑ ( ♯ ‘ { 𝑧  ∈  𝑆  ∣  ¬  2  ∥  ( 1st  ‘ 𝑧 ) } ) )  =  ( 1  /  ( - 1 ↑ ( ♯ ‘ { 𝑧  ∈  𝑆  ∣  ¬  2  ∥  ( 1st  ‘ 𝑧 ) } ) ) ) ) | 
						
							| 54 | 52 53 | eqtrid | ⊢ ( 𝜑  →  ( - 1 ↑ ( ♯ ‘ { 𝑧  ∈  𝑆  ∣  ¬  2  ∥  ( 1st  ‘ 𝑧 ) } ) )  =  ( 1  /  ( - 1 ↑ ( ♯ ‘ { 𝑧  ∈  𝑆  ∣  ¬  2  ∥  ( 1st  ‘ 𝑧 ) } ) ) ) ) | 
						
							| 55 | 54 | oveq2d | ⊢ ( 𝜑  →  ( ( - 1 ↑ ( ♯ ‘ { 𝑧  ∈  𝑆  ∣  ¬  2  ∥  ( 1st  ‘ 𝑧 ) } ) )  ·  ( - 1 ↑ ( ♯ ‘ { 𝑧  ∈  𝑆  ∣  ¬  2  ∥  ( 1st  ‘ 𝑧 ) } ) ) )  =  ( ( - 1 ↑ ( ♯ ‘ { 𝑧  ∈  𝑆  ∣  ¬  2  ∥  ( 1st  ‘ 𝑧 ) } ) )  ·  ( 1  /  ( - 1 ↑ ( ♯ ‘ { 𝑧  ∈  𝑆  ∣  ¬  2  ∥  ( 1st  ‘ 𝑧 ) } ) ) ) ) ) | 
						
							| 56 | 34 | adantr | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  𝑆  ∈  Fin ) | 
						
							| 57 |  | ssrab2 | ⊢ { 𝑧  ∈  𝑆  ∣  ( 1st  ‘ 𝑧 )  =  ( 𝑃  −  ( 2  ·  𝑢 ) ) }  ⊆  𝑆 | 
						
							| 58 |  | ssfi | ⊢ ( ( 𝑆  ∈  Fin  ∧  { 𝑧  ∈  𝑆  ∣  ( 1st  ‘ 𝑧 )  =  ( 𝑃  −  ( 2  ·  𝑢 ) ) }  ⊆  𝑆 )  →  { 𝑧  ∈  𝑆  ∣  ( 1st  ‘ 𝑧 )  =  ( 𝑃  −  ( 2  ·  𝑢 ) ) }  ∈  Fin ) | 
						
							| 59 | 56 57 58 | sylancl | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  { 𝑧  ∈  𝑆  ∣  ( 1st  ‘ 𝑧 )  =  ( 𝑃  −  ( 2  ·  𝑢 ) ) }  ∈  Fin ) | 
						
							| 60 |  | fveqeq2 | ⊢ ( 𝑧  =  𝑣  →  ( ( 1st  ‘ 𝑧 )  =  ( 𝑃  −  ( 2  ·  𝑢 ) )  ↔  ( 1st  ‘ 𝑣 )  =  ( 𝑃  −  ( 2  ·  𝑢 ) ) ) ) | 
						
							| 61 | 60 | elrab | ⊢ ( 𝑣  ∈  { 𝑧  ∈  𝑆  ∣  ( 1st  ‘ 𝑧 )  =  ( 𝑃  −  ( 2  ·  𝑢 ) ) }  ↔  ( 𝑣  ∈  𝑆  ∧  ( 1st  ‘ 𝑣 )  =  ( 𝑃  −  ( 2  ·  𝑢 ) ) ) ) | 
						
							| 62 | 61 | simprbi | ⊢ ( 𝑣  ∈  { 𝑧  ∈  𝑆  ∣  ( 1st  ‘ 𝑧 )  =  ( 𝑃  −  ( 2  ·  𝑢 ) ) }  →  ( 1st  ‘ 𝑣 )  =  ( 𝑃  −  ( 2  ·  𝑢 ) ) ) | 
						
							| 63 | 62 | ad2antll | ⊢ ( ( 𝜑  ∧  ( 𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 )  ∧  𝑣  ∈  { 𝑧  ∈  𝑆  ∣  ( 1st  ‘ 𝑧 )  =  ( 𝑃  −  ( 2  ·  𝑢 ) ) } ) )  →  ( 1st  ‘ 𝑣 )  =  ( 𝑃  −  ( 2  ·  𝑢 ) ) ) | 
						
							| 64 | 63 | oveq2d | ⊢ ( ( 𝜑  ∧  ( 𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 )  ∧  𝑣  ∈  { 𝑧  ∈  𝑆  ∣  ( 1st  ‘ 𝑧 )  =  ( 𝑃  −  ( 2  ·  𝑢 ) ) } ) )  →  ( 𝑃  −  ( 1st  ‘ 𝑣 ) )  =  ( 𝑃  −  ( 𝑃  −  ( 2  ·  𝑢 ) ) ) ) | 
						
							| 65 | 14 | adantr | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  𝑃  ∈  ℕ ) | 
						
							| 66 | 65 | nncnd | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  𝑃  ∈  ℂ ) | 
						
							| 67 | 66 | adantrr | ⊢ ( ( 𝜑  ∧  ( 𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 )  ∧  𝑣  ∈  { 𝑧  ∈  𝑆  ∣  ( 1st  ‘ 𝑧 )  =  ( 𝑃  −  ( 2  ·  𝑢 ) ) } ) )  →  𝑃  ∈  ℂ ) | 
						
							| 68 | 21 | zcnd | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  ( 2  ·  𝑢 )  ∈  ℂ ) | 
						
							| 69 | 68 | adantrr | ⊢ ( ( 𝜑  ∧  ( 𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 )  ∧  𝑣  ∈  { 𝑧  ∈  𝑆  ∣  ( 1st  ‘ 𝑧 )  =  ( 𝑃  −  ( 2  ·  𝑢 ) ) } ) )  →  ( 2  ·  𝑢 )  ∈  ℂ ) | 
						
							| 70 | 67 69 | nncand | ⊢ ( ( 𝜑  ∧  ( 𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 )  ∧  𝑣  ∈  { 𝑧  ∈  𝑆  ∣  ( 1st  ‘ 𝑧 )  =  ( 𝑃  −  ( 2  ·  𝑢 ) ) } ) )  →  ( 𝑃  −  ( 𝑃  −  ( 2  ·  𝑢 ) ) )  =  ( 2  ·  𝑢 ) ) | 
						
							| 71 | 64 70 | eqtrd | ⊢ ( ( 𝜑  ∧  ( 𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 )  ∧  𝑣  ∈  { 𝑧  ∈  𝑆  ∣  ( 1st  ‘ 𝑧 )  =  ( 𝑃  −  ( 2  ·  𝑢 ) ) } ) )  →  ( 𝑃  −  ( 1st  ‘ 𝑣 ) )  =  ( 2  ·  𝑢 ) ) | 
						
							| 72 | 71 | oveq1d | ⊢ ( ( 𝜑  ∧  ( 𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 )  ∧  𝑣  ∈  { 𝑧  ∈  𝑆  ∣  ( 1st  ‘ 𝑧 )  =  ( 𝑃  −  ( 2  ·  𝑢 ) ) } ) )  →  ( ( 𝑃  −  ( 1st  ‘ 𝑣 ) )  /  2 )  =  ( ( 2  ·  𝑢 )  /  2 ) ) | 
						
							| 73 | 19 | zcnd | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  𝑢  ∈  ℂ ) | 
						
							| 74 | 73 | adantrr | ⊢ ( ( 𝜑  ∧  ( 𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 )  ∧  𝑣  ∈  { 𝑧  ∈  𝑆  ∣  ( 1st  ‘ 𝑧 )  =  ( 𝑃  −  ( 2  ·  𝑢 ) ) } ) )  →  𝑢  ∈  ℂ ) | 
						
							| 75 |  | 2cnd | ⊢ ( ( 𝜑  ∧  ( 𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 )  ∧  𝑣  ∈  { 𝑧  ∈  𝑆  ∣  ( 1st  ‘ 𝑧 )  =  ( 𝑃  −  ( 2  ·  𝑢 ) ) } ) )  →  2  ∈  ℂ ) | 
						
							| 76 |  | 2ne0 | ⊢ 2  ≠  0 | 
						
							| 77 | 76 | a1i | ⊢ ( ( 𝜑  ∧  ( 𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 )  ∧  𝑣  ∈  { 𝑧  ∈  𝑆  ∣  ( 1st  ‘ 𝑧 )  =  ( 𝑃  −  ( 2  ·  𝑢 ) ) } ) )  →  2  ≠  0 ) | 
						
							| 78 | 74 75 77 | divcan3d | ⊢ ( ( 𝜑  ∧  ( 𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 )  ∧  𝑣  ∈  { 𝑧  ∈  𝑆  ∣  ( 1st  ‘ 𝑧 )  =  ( 𝑃  −  ( 2  ·  𝑢 ) ) } ) )  →  ( ( 2  ·  𝑢 )  /  2 )  =  𝑢 ) | 
						
							| 79 | 72 78 | eqtrd | ⊢ ( ( 𝜑  ∧  ( 𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 )  ∧  𝑣  ∈  { 𝑧  ∈  𝑆  ∣  ( 1st  ‘ 𝑧 )  =  ( 𝑃  −  ( 2  ·  𝑢 ) ) } ) )  →  ( ( 𝑃  −  ( 1st  ‘ 𝑣 ) )  /  2 )  =  𝑢 ) | 
						
							| 80 | 79 | ralrimivva | ⊢ ( 𝜑  →  ∀ 𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) ∀ 𝑣  ∈  { 𝑧  ∈  𝑆  ∣  ( 1st  ‘ 𝑧 )  =  ( 𝑃  −  ( 2  ·  𝑢 ) ) } ( ( 𝑃  −  ( 1st  ‘ 𝑣 ) )  /  2 )  =  𝑢 ) | 
						
							| 81 |  | invdisj | ⊢ ( ∀ 𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) ∀ 𝑣  ∈  { 𝑧  ∈  𝑆  ∣  ( 1st  ‘ 𝑧 )  =  ( 𝑃  −  ( 2  ·  𝑢 ) ) } ( ( 𝑃  −  ( 1st  ‘ 𝑣 ) )  /  2 )  =  𝑢  →  Disj  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) { 𝑧  ∈  𝑆  ∣  ( 1st  ‘ 𝑧 )  =  ( 𝑃  −  ( 2  ·  𝑢 ) ) } ) | 
						
							| 82 | 80 81 | syl | ⊢ ( 𝜑  →  Disj  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) { 𝑧  ∈  𝑆  ∣  ( 1st  ‘ 𝑧 )  =  ( 𝑃  −  ( 2  ·  𝑢 ) ) } ) | 
						
							| 83 | 11 59 82 | hashiun | ⊢ ( 𝜑  →  ( ♯ ‘ ∪  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) { 𝑧  ∈  𝑆  ∣  ( 1st  ‘ 𝑧 )  =  ( 𝑃  −  ( 2  ·  𝑢 ) ) } )  =  Σ 𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) ( ♯ ‘ { 𝑧  ∈  𝑆  ∣  ( 1st  ‘ 𝑧 )  =  ( 𝑃  −  ( 2  ·  𝑢 ) ) } ) ) | 
						
							| 84 |  | iunrab | ⊢ ∪  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) { 𝑧  ∈  𝑆  ∣  ( 1st  ‘ 𝑧 )  =  ( 𝑃  −  ( 2  ·  𝑢 ) ) }  =  { 𝑧  ∈  𝑆  ∣  ∃ 𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) ( 1st  ‘ 𝑧 )  =  ( 𝑃  −  ( 2  ·  𝑢 ) ) } | 
						
							| 85 |  | eldifsni | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  𝑃  ≠  2 ) | 
						
							| 86 | 1 85 | syl | ⊢ ( 𝜑  →  𝑃  ≠  2 ) | 
						
							| 87 | 86 | necomd | ⊢ ( 𝜑  →  2  ≠  𝑃 ) | 
						
							| 88 | 87 | neneqd | ⊢ ( 𝜑  →  ¬  2  =  𝑃 ) | 
						
							| 89 | 88 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  ¬  2  =  𝑃 ) | 
						
							| 90 |  | uzid | ⊢ ( 2  ∈  ℤ  →  2  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 91 | 17 90 | ax-mp | ⊢ 2  ∈  ( ℤ≥ ‘ 2 ) | 
						
							| 92 | 1 | eldifad | ⊢ ( 𝜑  →  𝑃  ∈  ℙ ) | 
						
							| 93 | 92 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  𝑃  ∈  ℙ ) | 
						
							| 94 |  | dvdsprm | ⊢ ( ( 2  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑃  ∈  ℙ )  →  ( 2  ∥  𝑃  ↔  2  =  𝑃 ) ) | 
						
							| 95 | 91 93 94 | sylancr | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  ( 2  ∥  𝑃  ↔  2  =  𝑃 ) ) | 
						
							| 96 | 89 95 | mtbird | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  ¬  2  ∥  𝑃 ) | 
						
							| 97 | 14 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  𝑃  ∈  ℕ ) | 
						
							| 98 | 97 | nncnd | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  𝑃  ∈  ℂ ) | 
						
							| 99 | 21 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  ( 2  ·  𝑢 )  ∈  ℤ ) | 
						
							| 100 | 99 | zcnd | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  ( 2  ·  𝑢 )  ∈  ℂ ) | 
						
							| 101 | 98 100 | npcand | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  ( ( 𝑃  −  ( 2  ·  𝑢 ) )  +  ( 2  ·  𝑢 ) )  =  𝑃 ) | 
						
							| 102 | 101 | breq2d | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  ( 2  ∥  ( ( 𝑃  −  ( 2  ·  𝑢 ) )  +  ( 2  ·  𝑢 ) )  ↔  2  ∥  𝑃 ) ) | 
						
							| 103 | 96 102 | mtbird | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  ¬  2  ∥  ( ( 𝑃  −  ( 2  ·  𝑢 ) )  +  ( 2  ·  𝑢 ) ) ) | 
						
							| 104 | 18 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  𝑢  ∈  ℤ ) | 
						
							| 105 |  | dvdsmul1 | ⊢ ( ( 2  ∈  ℤ  ∧  𝑢  ∈  ℤ )  →  2  ∥  ( 2  ·  𝑢 ) ) | 
						
							| 106 | 17 104 105 | sylancr | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  2  ∥  ( 2  ·  𝑢 ) ) | 
						
							| 107 | 17 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  2  ∈  ℤ ) | 
						
							| 108 | 97 | nnzd | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  𝑃  ∈  ℤ ) | 
						
							| 109 | 108 99 | zsubcld | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  ( 𝑃  −  ( 2  ·  𝑢 ) )  ∈  ℤ ) | 
						
							| 110 |  | dvds2add | ⊢ ( ( 2  ∈  ℤ  ∧  ( 𝑃  −  ( 2  ·  𝑢 ) )  ∈  ℤ  ∧  ( 2  ·  𝑢 )  ∈  ℤ )  →  ( ( 2  ∥  ( 𝑃  −  ( 2  ·  𝑢 ) )  ∧  2  ∥  ( 2  ·  𝑢 ) )  →  2  ∥  ( ( 𝑃  −  ( 2  ·  𝑢 ) )  +  ( 2  ·  𝑢 ) ) ) ) | 
						
							| 111 | 107 109 99 110 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  ( ( 2  ∥  ( 𝑃  −  ( 2  ·  𝑢 ) )  ∧  2  ∥  ( 2  ·  𝑢 ) )  →  2  ∥  ( ( 𝑃  −  ( 2  ·  𝑢 ) )  +  ( 2  ·  𝑢 ) ) ) ) | 
						
							| 112 | 106 111 | mpan2d | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  ( 2  ∥  ( 𝑃  −  ( 2  ·  𝑢 ) )  →  2  ∥  ( ( 𝑃  −  ( 2  ·  𝑢 ) )  +  ( 2  ·  𝑢 ) ) ) ) | 
						
							| 113 | 103 112 | mtod | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  ¬  2  ∥  ( 𝑃  −  ( 2  ·  𝑢 ) ) ) | 
						
							| 114 |  | breq2 | ⊢ ( ( 1st  ‘ 𝑧 )  =  ( 𝑃  −  ( 2  ·  𝑢 ) )  →  ( 2  ∥  ( 1st  ‘ 𝑧 )  ↔  2  ∥  ( 𝑃  −  ( 2  ·  𝑢 ) ) ) ) | 
						
							| 115 | 114 | notbid | ⊢ ( ( 1st  ‘ 𝑧 )  =  ( 𝑃  −  ( 2  ·  𝑢 ) )  →  ( ¬  2  ∥  ( 1st  ‘ 𝑧 )  ↔  ¬  2  ∥  ( 𝑃  −  ( 2  ·  𝑢 ) ) ) ) | 
						
							| 116 | 113 115 | syl5ibrcom | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  ( ( 1st  ‘ 𝑧 )  =  ( 𝑃  −  ( 2  ·  𝑢 ) )  →  ¬  2  ∥  ( 1st  ‘ 𝑧 ) ) ) | 
						
							| 117 | 116 | rexlimdva | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  →  ( ∃ 𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) ( 1st  ‘ 𝑧 )  =  ( 𝑃  −  ( 2  ·  𝑢 ) )  →  ¬  2  ∥  ( 1st  ‘ 𝑧 ) ) ) | 
						
							| 118 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  →  𝑧  ∈  𝑆 ) | 
						
							| 119 | 32 118 | sselid | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  →  𝑧  ∈  ( ( 1 ... 𝑀 )  ×  ( 1 ... 𝑁 ) ) ) | 
						
							| 120 |  | xp1st | ⊢ ( 𝑧  ∈  ( ( 1 ... 𝑀 )  ×  ( 1 ... 𝑁 ) )  →  ( 1st  ‘ 𝑧 )  ∈  ( 1 ... 𝑀 ) ) | 
						
							| 121 | 119 120 | syl | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  →  ( 1st  ‘ 𝑧 )  ∈  ( 1 ... 𝑀 ) ) | 
						
							| 122 |  | elfzelz | ⊢ ( ( 1st  ‘ 𝑧 )  ∈  ( 1 ... 𝑀 )  →  ( 1st  ‘ 𝑧 )  ∈  ℤ ) | 
						
							| 123 |  | odd2np1 | ⊢ ( ( 1st  ‘ 𝑧 )  ∈  ℤ  →  ( ¬  2  ∥  ( 1st  ‘ 𝑧 )  ↔  ∃ 𝑛  ∈  ℤ ( ( 2  ·  𝑛 )  +  1 )  =  ( 1st  ‘ 𝑧 ) ) ) | 
						
							| 124 | 121 122 123 | 3syl | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  →  ( ¬  2  ∥  ( 1st  ‘ 𝑧 )  ↔  ∃ 𝑛  ∈  ℤ ( ( 2  ·  𝑛 )  +  1 )  =  ( 1st  ‘ 𝑧 ) ) ) | 
						
							| 125 | 1 4 | gausslemma2dlem0b | ⊢ ( 𝜑  →  𝑀  ∈  ℕ ) | 
						
							| 126 | 125 | nnred | ⊢ ( 𝜑  →  𝑀  ∈  ℝ ) | 
						
							| 127 | 126 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  ∧  ( 𝑛  ∈  ℤ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  ( 1st  ‘ 𝑧 ) ) )  →  𝑀  ∈  ℝ ) | 
						
							| 128 | 127 | rehalfcld | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  ∧  ( 𝑛  ∈  ℤ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  ( 1st  ‘ 𝑧 ) ) )  →  ( 𝑀  /  2 )  ∈  ℝ ) | 
						
							| 129 | 128 | flcld | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  ∧  ( 𝑛  ∈  ℤ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  ( 1st  ‘ 𝑧 ) ) )  →  ( ⌊ ‘ ( 𝑀  /  2 ) )  ∈  ℤ ) | 
						
							| 130 | 129 | peano2zd | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  ∧  ( 𝑛  ∈  ℤ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  ( 1st  ‘ 𝑧 ) ) )  →  ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 )  ∈  ℤ ) | 
						
							| 131 | 125 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  ∧  ( 𝑛  ∈  ℤ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  ( 1st  ‘ 𝑧 ) ) )  →  𝑀  ∈  ℕ ) | 
						
							| 132 | 131 | nnzd | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  ∧  ( 𝑛  ∈  ℤ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  ( 1st  ‘ 𝑧 ) ) )  →  𝑀  ∈  ℤ ) | 
						
							| 133 |  | simprl | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  ∧  ( 𝑛  ∈  ℤ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  ( 1st  ‘ 𝑧 ) ) )  →  𝑛  ∈  ℤ ) | 
						
							| 134 | 132 133 | zsubcld | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  ∧  ( 𝑛  ∈  ℤ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  ( 1st  ‘ 𝑧 ) ) )  →  ( 𝑀  −  𝑛 )  ∈  ℤ ) | 
						
							| 135 |  | reflcl | ⊢ ( ( 𝑀  /  2 )  ∈  ℝ  →  ( ⌊ ‘ ( 𝑀  /  2 ) )  ∈  ℝ ) | 
						
							| 136 | 128 135 | syl | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  ∧  ( 𝑛  ∈  ℤ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  ( 1st  ‘ 𝑧 ) ) )  →  ( ⌊ ‘ ( 𝑀  /  2 ) )  ∈  ℝ ) | 
						
							| 137 | 134 | zred | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  ∧  ( 𝑛  ∈  ℤ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  ( 1st  ‘ 𝑧 ) ) )  →  ( 𝑀  −  𝑛 )  ∈  ℝ ) | 
						
							| 138 |  | flle | ⊢ ( ( 𝑀  /  2 )  ∈  ℝ  →  ( ⌊ ‘ ( 𝑀  /  2 ) )  ≤  ( 𝑀  /  2 ) ) | 
						
							| 139 | 128 138 | syl | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  ∧  ( 𝑛  ∈  ℤ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  ( 1st  ‘ 𝑧 ) ) )  →  ( ⌊ ‘ ( 𝑀  /  2 ) )  ≤  ( 𝑀  /  2 ) ) | 
						
							| 140 |  | zre | ⊢ ( 𝑛  ∈  ℤ  →  𝑛  ∈  ℝ ) | 
						
							| 141 | 140 | ad2antrl | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  ∧  ( 𝑛  ∈  ℤ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  ( 1st  ‘ 𝑧 ) ) )  →  𝑛  ∈  ℝ ) | 
						
							| 142 |  | simprr | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  ∧  ( 𝑛  ∈  ℤ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  ( 1st  ‘ 𝑧 ) ) )  →  ( ( 2  ·  𝑛 )  +  1 )  =  ( 1st  ‘ 𝑧 ) ) | 
						
							| 143 | 121 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  ∧  ( 𝑛  ∈  ℤ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  ( 1st  ‘ 𝑧 ) ) )  →  ( 1st  ‘ 𝑧 )  ∈  ( 1 ... 𝑀 ) ) | 
						
							| 144 | 142 143 | eqeltrd | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  ∧  ( 𝑛  ∈  ℤ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  ( 1st  ‘ 𝑧 ) ) )  →  ( ( 2  ·  𝑛 )  +  1 )  ∈  ( 1 ... 𝑀 ) ) | 
						
							| 145 |  | elfzle2 | ⊢ ( ( ( 2  ·  𝑛 )  +  1 )  ∈  ( 1 ... 𝑀 )  →  ( ( 2  ·  𝑛 )  +  1 )  ≤  𝑀 ) | 
						
							| 146 | 144 145 | syl | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  ∧  ( 𝑛  ∈  ℤ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  ( 1st  ‘ 𝑧 ) ) )  →  ( ( 2  ·  𝑛 )  +  1 )  ≤  𝑀 ) | 
						
							| 147 |  | zmulcl | ⊢ ( ( 2  ∈  ℤ  ∧  𝑛  ∈  ℤ )  →  ( 2  ·  𝑛 )  ∈  ℤ ) | 
						
							| 148 | 17 133 147 | sylancr | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  ∧  ( 𝑛  ∈  ℤ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  ( 1st  ‘ 𝑧 ) ) )  →  ( 2  ·  𝑛 )  ∈  ℤ ) | 
						
							| 149 |  | zltp1le | ⊢ ( ( ( 2  ·  𝑛 )  ∈  ℤ  ∧  𝑀  ∈  ℤ )  →  ( ( 2  ·  𝑛 )  <  𝑀  ↔  ( ( 2  ·  𝑛 )  +  1 )  ≤  𝑀 ) ) | 
						
							| 150 | 148 132 149 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  ∧  ( 𝑛  ∈  ℤ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  ( 1st  ‘ 𝑧 ) ) )  →  ( ( 2  ·  𝑛 )  <  𝑀  ↔  ( ( 2  ·  𝑛 )  +  1 )  ≤  𝑀 ) ) | 
						
							| 151 | 146 150 | mpbird | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  ∧  ( 𝑛  ∈  ℤ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  ( 1st  ‘ 𝑧 ) ) )  →  ( 2  ·  𝑛 )  <  𝑀 ) | 
						
							| 152 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 153 | 152 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  ∧  ( 𝑛  ∈  ℤ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  ( 1st  ‘ 𝑧 ) ) )  →  2  ∈  ℝ ) | 
						
							| 154 |  | 2pos | ⊢ 0  <  2 | 
						
							| 155 | 154 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  ∧  ( 𝑛  ∈  ℤ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  ( 1st  ‘ 𝑧 ) ) )  →  0  <  2 ) | 
						
							| 156 |  | ltmuldiv2 | ⊢ ( ( 𝑛  ∈  ℝ  ∧  𝑀  ∈  ℝ  ∧  ( 2  ∈  ℝ  ∧  0  <  2 ) )  →  ( ( 2  ·  𝑛 )  <  𝑀  ↔  𝑛  <  ( 𝑀  /  2 ) ) ) | 
						
							| 157 | 141 127 153 155 156 | syl112anc | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  ∧  ( 𝑛  ∈  ℤ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  ( 1st  ‘ 𝑧 ) ) )  →  ( ( 2  ·  𝑛 )  <  𝑀  ↔  𝑛  <  ( 𝑀  /  2 ) ) ) | 
						
							| 158 | 151 157 | mpbid | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  ∧  ( 𝑛  ∈  ℤ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  ( 1st  ‘ 𝑧 ) ) )  →  𝑛  <  ( 𝑀  /  2 ) ) | 
						
							| 159 | 128 | recnd | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  ∧  ( 𝑛  ∈  ℤ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  ( 1st  ‘ 𝑧 ) ) )  →  ( 𝑀  /  2 )  ∈  ℂ ) | 
						
							| 160 | 125 | nncnd | ⊢ ( 𝜑  →  𝑀  ∈  ℂ ) | 
						
							| 161 | 160 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  ∧  ( 𝑛  ∈  ℤ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  ( 1st  ‘ 𝑧 ) ) )  →  𝑀  ∈  ℂ ) | 
						
							| 162 | 161 | 2halvesd | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  ∧  ( 𝑛  ∈  ℤ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  ( 1st  ‘ 𝑧 ) ) )  →  ( ( 𝑀  /  2 )  +  ( 𝑀  /  2 ) )  =  𝑀 ) | 
						
							| 163 | 159 159 162 | mvlraddd | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  ∧  ( 𝑛  ∈  ℤ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  ( 1st  ‘ 𝑧 ) ) )  →  ( 𝑀  /  2 )  =  ( 𝑀  −  ( 𝑀  /  2 ) ) ) | 
						
							| 164 | 158 163 | breqtrd | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  ∧  ( 𝑛  ∈  ℤ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  ( 1st  ‘ 𝑧 ) ) )  →  𝑛  <  ( 𝑀  −  ( 𝑀  /  2 ) ) ) | 
						
							| 165 | 141 127 128 164 | ltsub13d | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  ∧  ( 𝑛  ∈  ℤ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  ( 1st  ‘ 𝑧 ) ) )  →  ( 𝑀  /  2 )  <  ( 𝑀  −  𝑛 ) ) | 
						
							| 166 | 136 128 137 139 165 | lelttrd | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  ∧  ( 𝑛  ∈  ℤ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  ( 1st  ‘ 𝑧 ) ) )  →  ( ⌊ ‘ ( 𝑀  /  2 ) )  <  ( 𝑀  −  𝑛 ) ) | 
						
							| 167 |  | zltp1le | ⊢ ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  ∈  ℤ  ∧  ( 𝑀  −  𝑛 )  ∈  ℤ )  →  ( ( ⌊ ‘ ( 𝑀  /  2 ) )  <  ( 𝑀  −  𝑛 )  ↔  ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 )  ≤  ( 𝑀  −  𝑛 ) ) ) | 
						
							| 168 | 129 134 167 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  ∧  ( 𝑛  ∈  ℤ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  ( 1st  ‘ 𝑧 ) ) )  →  ( ( ⌊ ‘ ( 𝑀  /  2 ) )  <  ( 𝑀  −  𝑛 )  ↔  ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 )  ≤  ( 𝑀  −  𝑛 ) ) ) | 
						
							| 169 | 166 168 | mpbid | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  ∧  ( 𝑛  ∈  ℤ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  ( 1st  ‘ 𝑧 ) ) )  →  ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 )  ≤  ( 𝑀  −  𝑛 ) ) | 
						
							| 170 |  | 2t0e0 | ⊢ ( 2  ·  0 )  =  0 | 
						
							| 171 |  | 2cn | ⊢ 2  ∈  ℂ | 
						
							| 172 |  | zcn | ⊢ ( 𝑛  ∈  ℤ  →  𝑛  ∈  ℂ ) | 
						
							| 173 | 172 | ad2antrl | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  ∧  ( 𝑛  ∈  ℤ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  ( 1st  ‘ 𝑧 ) ) )  →  𝑛  ∈  ℂ ) | 
						
							| 174 |  | mulcl | ⊢ ( ( 2  ∈  ℂ  ∧  𝑛  ∈  ℂ )  →  ( 2  ·  𝑛 )  ∈  ℂ ) | 
						
							| 175 | 171 173 174 | sylancr | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  ∧  ( 𝑛  ∈  ℤ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  ( 1st  ‘ 𝑧 ) ) )  →  ( 2  ·  𝑛 )  ∈  ℂ ) | 
						
							| 176 |  | pncan | ⊢ ( ( ( 2  ·  𝑛 )  ∈  ℂ  ∧  1  ∈  ℂ )  →  ( ( ( 2  ·  𝑛 )  +  1 )  −  1 )  =  ( 2  ·  𝑛 ) ) | 
						
							| 177 | 175 47 176 | sylancl | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  ∧  ( 𝑛  ∈  ℤ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  ( 1st  ‘ 𝑧 ) ) )  →  ( ( ( 2  ·  𝑛 )  +  1 )  −  1 )  =  ( 2  ·  𝑛 ) ) | 
						
							| 178 |  | elfznn | ⊢ ( ( ( 2  ·  𝑛 )  +  1 )  ∈  ( 1 ... 𝑀 )  →  ( ( 2  ·  𝑛 )  +  1 )  ∈  ℕ ) | 
						
							| 179 |  | nnm1nn0 | ⊢ ( ( ( 2  ·  𝑛 )  +  1 )  ∈  ℕ  →  ( ( ( 2  ·  𝑛 )  +  1 )  −  1 )  ∈  ℕ0 ) | 
						
							| 180 | 144 178 179 | 3syl | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  ∧  ( 𝑛  ∈  ℤ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  ( 1st  ‘ 𝑧 ) ) )  →  ( ( ( 2  ·  𝑛 )  +  1 )  −  1 )  ∈  ℕ0 ) | 
						
							| 181 | 177 180 | eqeltrrd | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  ∧  ( 𝑛  ∈  ℤ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  ( 1st  ‘ 𝑧 ) ) )  →  ( 2  ·  𝑛 )  ∈  ℕ0 ) | 
						
							| 182 | 181 | nn0ge0d | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  ∧  ( 𝑛  ∈  ℤ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  ( 1st  ‘ 𝑧 ) ) )  →  0  ≤  ( 2  ·  𝑛 ) ) | 
						
							| 183 | 170 182 | eqbrtrid | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  ∧  ( 𝑛  ∈  ℤ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  ( 1st  ‘ 𝑧 ) ) )  →  ( 2  ·  0 )  ≤  ( 2  ·  𝑛 ) ) | 
						
							| 184 |  | 0red | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  ∧  ( 𝑛  ∈  ℤ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  ( 1st  ‘ 𝑧 ) ) )  →  0  ∈  ℝ ) | 
						
							| 185 |  | lemul2 | ⊢ ( ( 0  ∈  ℝ  ∧  𝑛  ∈  ℝ  ∧  ( 2  ∈  ℝ  ∧  0  <  2 ) )  →  ( 0  ≤  𝑛  ↔  ( 2  ·  0 )  ≤  ( 2  ·  𝑛 ) ) ) | 
						
							| 186 | 184 141 153 155 185 | syl112anc | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  ∧  ( 𝑛  ∈  ℤ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  ( 1st  ‘ 𝑧 ) ) )  →  ( 0  ≤  𝑛  ↔  ( 2  ·  0 )  ≤  ( 2  ·  𝑛 ) ) ) | 
						
							| 187 | 183 186 | mpbird | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  ∧  ( 𝑛  ∈  ℤ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  ( 1st  ‘ 𝑧 ) ) )  →  0  ≤  𝑛 ) | 
						
							| 188 | 127 141 | subge02d | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  ∧  ( 𝑛  ∈  ℤ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  ( 1st  ‘ 𝑧 ) ) )  →  ( 0  ≤  𝑛  ↔  ( 𝑀  −  𝑛 )  ≤  𝑀 ) ) | 
						
							| 189 | 187 188 | mpbid | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  ∧  ( 𝑛  ∈  ℤ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  ( 1st  ‘ 𝑧 ) ) )  →  ( 𝑀  −  𝑛 )  ≤  𝑀 ) | 
						
							| 190 | 130 132 134 169 189 | elfzd | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  ∧  ( 𝑛  ∈  ℤ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  ( 1st  ‘ 𝑧 ) ) )  →  ( 𝑀  −  𝑛 )  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) ) | 
						
							| 191 | 92 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  ∧  ( 𝑛  ∈  ℤ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  ( 1st  ‘ 𝑧 ) ) )  →  𝑃  ∈  ℙ ) | 
						
							| 192 |  | prmnn | ⊢ ( 𝑃  ∈  ℙ  →  𝑃  ∈  ℕ ) | 
						
							| 193 | 191 192 | syl | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  ∧  ( 𝑛  ∈  ℤ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  ( 1st  ‘ 𝑧 ) ) )  →  𝑃  ∈  ℕ ) | 
						
							| 194 | 193 | nncnd | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  ∧  ( 𝑛  ∈  ℤ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  ( 1st  ‘ 𝑧 ) ) )  →  𝑃  ∈  ℂ ) | 
						
							| 195 |  | peano2cn | ⊢ ( ( 2  ·  𝑛 )  ∈  ℂ  →  ( ( 2  ·  𝑛 )  +  1 )  ∈  ℂ ) | 
						
							| 196 | 175 195 | syl | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  ∧  ( 𝑛  ∈  ℤ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  ( 1st  ‘ 𝑧 ) ) )  →  ( ( 2  ·  𝑛 )  +  1 )  ∈  ℂ ) | 
						
							| 197 | 194 196 | nncand | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  ∧  ( 𝑛  ∈  ℤ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  ( 1st  ‘ 𝑧 ) ) )  →  ( 𝑃  −  ( 𝑃  −  ( ( 2  ·  𝑛 )  +  1 ) ) )  =  ( ( 2  ·  𝑛 )  +  1 ) ) | 
						
							| 198 |  | 1cnd | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  ∧  ( 𝑛  ∈  ℤ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  ( 1st  ‘ 𝑧 ) ) )  →  1  ∈  ℂ ) | 
						
							| 199 | 194 175 198 | sub32d | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  ∧  ( 𝑛  ∈  ℤ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  ( 1st  ‘ 𝑧 ) ) )  →  ( ( 𝑃  −  ( 2  ·  𝑛 ) )  −  1 )  =  ( ( 𝑃  −  1 )  −  ( 2  ·  𝑛 ) ) ) | 
						
							| 200 | 194 175 198 | subsub4d | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  ∧  ( 𝑛  ∈  ℤ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  ( 1st  ‘ 𝑧 ) ) )  →  ( ( 𝑃  −  ( 2  ·  𝑛 ) )  −  1 )  =  ( 𝑃  −  ( ( 2  ·  𝑛 )  +  1 ) ) ) | 
						
							| 201 |  | 2cnd | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  ∧  ( 𝑛  ∈  ℤ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  ( 1st  ‘ 𝑧 ) ) )  →  2  ∈  ℂ ) | 
						
							| 202 | 201 161 173 | subdid | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  ∧  ( 𝑛  ∈  ℤ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  ( 1st  ‘ 𝑧 ) ) )  →  ( 2  ·  ( 𝑀  −  𝑛 ) )  =  ( ( 2  ·  𝑀 )  −  ( 2  ·  𝑛 ) ) ) | 
						
							| 203 | 4 | oveq2i | ⊢ ( 2  ·  𝑀 )  =  ( 2  ·  ( ( 𝑃  −  1 )  /  2 ) ) | 
						
							| 204 | 14 | nnzd | ⊢ ( 𝜑  →  𝑃  ∈  ℤ ) | 
						
							| 205 | 204 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  ∧  ( 𝑛  ∈  ℤ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  ( 1st  ‘ 𝑧 ) ) )  →  𝑃  ∈  ℤ ) | 
						
							| 206 |  | peano2zm | ⊢ ( 𝑃  ∈  ℤ  →  ( 𝑃  −  1 )  ∈  ℤ ) | 
						
							| 207 | 205 206 | syl | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  ∧  ( 𝑛  ∈  ℤ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  ( 1st  ‘ 𝑧 ) ) )  →  ( 𝑃  −  1 )  ∈  ℤ ) | 
						
							| 208 | 207 | zcnd | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  ∧  ( 𝑛  ∈  ℤ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  ( 1st  ‘ 𝑧 ) ) )  →  ( 𝑃  −  1 )  ∈  ℂ ) | 
						
							| 209 | 76 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  ∧  ( 𝑛  ∈  ℤ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  ( 1st  ‘ 𝑧 ) ) )  →  2  ≠  0 ) | 
						
							| 210 | 208 201 209 | divcan2d | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  ∧  ( 𝑛  ∈  ℤ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  ( 1st  ‘ 𝑧 ) ) )  →  ( 2  ·  ( ( 𝑃  −  1 )  /  2 ) )  =  ( 𝑃  −  1 ) ) | 
						
							| 211 | 203 210 | eqtrid | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  ∧  ( 𝑛  ∈  ℤ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  ( 1st  ‘ 𝑧 ) ) )  →  ( 2  ·  𝑀 )  =  ( 𝑃  −  1 ) ) | 
						
							| 212 | 211 | oveq1d | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  ∧  ( 𝑛  ∈  ℤ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  ( 1st  ‘ 𝑧 ) ) )  →  ( ( 2  ·  𝑀 )  −  ( 2  ·  𝑛 ) )  =  ( ( 𝑃  −  1 )  −  ( 2  ·  𝑛 ) ) ) | 
						
							| 213 | 202 212 | eqtr2d | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  ∧  ( 𝑛  ∈  ℤ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  ( 1st  ‘ 𝑧 ) ) )  →  ( ( 𝑃  −  1 )  −  ( 2  ·  𝑛 ) )  =  ( 2  ·  ( 𝑀  −  𝑛 ) ) ) | 
						
							| 214 | 199 200 213 | 3eqtr3d | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  ∧  ( 𝑛  ∈  ℤ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  ( 1st  ‘ 𝑧 ) ) )  →  ( 𝑃  −  ( ( 2  ·  𝑛 )  +  1 ) )  =  ( 2  ·  ( 𝑀  −  𝑛 ) ) ) | 
						
							| 215 | 214 | oveq2d | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  ∧  ( 𝑛  ∈  ℤ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  ( 1st  ‘ 𝑧 ) ) )  →  ( 𝑃  −  ( 𝑃  −  ( ( 2  ·  𝑛 )  +  1 ) ) )  =  ( 𝑃  −  ( 2  ·  ( 𝑀  −  𝑛 ) ) ) ) | 
						
							| 216 | 197 215 142 | 3eqtr3rd | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  ∧  ( 𝑛  ∈  ℤ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  ( 1st  ‘ 𝑧 ) ) )  →  ( 1st  ‘ 𝑧 )  =  ( 𝑃  −  ( 2  ·  ( 𝑀  −  𝑛 ) ) ) ) | 
						
							| 217 |  | oveq2 | ⊢ ( 𝑢  =  ( 𝑀  −  𝑛 )  →  ( 2  ·  𝑢 )  =  ( 2  ·  ( 𝑀  −  𝑛 ) ) ) | 
						
							| 218 | 217 | oveq2d | ⊢ ( 𝑢  =  ( 𝑀  −  𝑛 )  →  ( 𝑃  −  ( 2  ·  𝑢 ) )  =  ( 𝑃  −  ( 2  ·  ( 𝑀  −  𝑛 ) ) ) ) | 
						
							| 219 | 218 | rspceeqv | ⊢ ( ( ( 𝑀  −  𝑛 )  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 )  ∧  ( 1st  ‘ 𝑧 )  =  ( 𝑃  −  ( 2  ·  ( 𝑀  −  𝑛 ) ) ) )  →  ∃ 𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) ( 1st  ‘ 𝑧 )  =  ( 𝑃  −  ( 2  ·  𝑢 ) ) ) | 
						
							| 220 | 190 216 219 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  ∧  ( 𝑛  ∈  ℤ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  ( 1st  ‘ 𝑧 ) ) )  →  ∃ 𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) ( 1st  ‘ 𝑧 )  =  ( 𝑃  −  ( 2  ·  𝑢 ) ) ) | 
						
							| 221 | 220 | rexlimdvaa | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  →  ( ∃ 𝑛  ∈  ℤ ( ( 2  ·  𝑛 )  +  1 )  =  ( 1st  ‘ 𝑧 )  →  ∃ 𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) ( 1st  ‘ 𝑧 )  =  ( 𝑃  −  ( 2  ·  𝑢 ) ) ) ) | 
						
							| 222 | 124 221 | sylbid | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  →  ( ¬  2  ∥  ( 1st  ‘ 𝑧 )  →  ∃ 𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) ( 1st  ‘ 𝑧 )  =  ( 𝑃  −  ( 2  ·  𝑢 ) ) ) ) | 
						
							| 223 | 117 222 | impbid | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  →  ( ∃ 𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) ( 1st  ‘ 𝑧 )  =  ( 𝑃  −  ( 2  ·  𝑢 ) )  ↔  ¬  2  ∥  ( 1st  ‘ 𝑧 ) ) ) | 
						
							| 224 | 223 | rabbidva | ⊢ ( 𝜑  →  { 𝑧  ∈  𝑆  ∣  ∃ 𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) ( 1st  ‘ 𝑧 )  =  ( 𝑃  −  ( 2  ·  𝑢 ) ) }  =  { 𝑧  ∈  𝑆  ∣  ¬  2  ∥  ( 1st  ‘ 𝑧 ) } ) | 
						
							| 225 | 84 224 | eqtrid | ⊢ ( 𝜑  →  ∪  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) { 𝑧  ∈  𝑆  ∣  ( 1st  ‘ 𝑧 )  =  ( 𝑃  −  ( 2  ·  𝑢 ) ) }  =  { 𝑧  ∈  𝑆  ∣  ¬  2  ∥  ( 1st  ‘ 𝑧 ) } ) | 
						
							| 226 | 225 | fveq2d | ⊢ ( 𝜑  →  ( ♯ ‘ ∪  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) { 𝑧  ∈  𝑆  ∣  ( 1st  ‘ 𝑧 )  =  ( 𝑃  −  ( 2  ·  𝑢 ) ) } )  =  ( ♯ ‘ { 𝑧  ∈  𝑆  ∣  ¬  2  ∥  ( 1st  ‘ 𝑧 ) } ) ) | 
						
							| 227 | 6 | relopabiv | ⊢ Rel  𝑆 | 
						
							| 228 |  | relss | ⊢ ( { 𝑧  ∈  𝑆  ∣  ( 1st  ‘ 𝑧 )  =  ( 𝑃  −  ( 2  ·  𝑢 ) ) }  ⊆  𝑆  →  ( Rel  𝑆  →  Rel  { 𝑧  ∈  𝑆  ∣  ( 1st  ‘ 𝑧 )  =  ( 𝑃  −  ( 2  ·  𝑢 ) ) } ) ) | 
						
							| 229 | 57 227 228 | mp2 | ⊢ Rel  { 𝑧  ∈  𝑆  ∣  ( 1st  ‘ 𝑧 )  =  ( 𝑃  −  ( 2  ·  𝑢 ) ) } | 
						
							| 230 |  | relxp | ⊢ Rel  ( { ( 𝑃  −  ( 2  ·  𝑢 ) ) }  ×  ( 1 ... ( ( 2  ·  𝑁 )  −  ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) ) ) ) | 
						
							| 231 | 6 | eleq2i | ⊢ ( 〈 𝑥 ,  𝑦 〉  ∈  𝑆  ↔  〈 𝑥 ,  𝑦 〉  ∈  { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ∈  ( 1 ... 𝑀 )  ∧  𝑦  ∈  ( 1 ... 𝑁 ) )  ∧  ( 𝑦  ·  𝑃 )  <  ( 𝑥  ·  𝑄 ) ) } ) | 
						
							| 232 |  | opabidw | ⊢ ( 〈 𝑥 ,  𝑦 〉  ∈  { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ∈  ( 1 ... 𝑀 )  ∧  𝑦  ∈  ( 1 ... 𝑁 ) )  ∧  ( 𝑦  ·  𝑃 )  <  ( 𝑥  ·  𝑄 ) ) }  ↔  ( ( 𝑥  ∈  ( 1 ... 𝑀 )  ∧  𝑦  ∈  ( 1 ... 𝑁 ) )  ∧  ( 𝑦  ·  𝑃 )  <  ( 𝑥  ·  𝑄 ) ) ) | 
						
							| 233 | 231 232 | bitri | ⊢ ( 〈 𝑥 ,  𝑦 〉  ∈  𝑆  ↔  ( ( 𝑥  ∈  ( 1 ... 𝑀 )  ∧  𝑦  ∈  ( 1 ... 𝑁 ) )  ∧  ( 𝑦  ·  𝑃 )  <  ( 𝑥  ·  𝑄 ) ) ) | 
						
							| 234 |  | anass | ⊢ ( ( ( 𝑦  ∈  ℕ  ∧  𝑦  ≤  𝑁 )  ∧  ( 𝑦  ·  𝑃 )  <  ( ( 𝑃  −  ( 2  ·  𝑢 ) )  ·  𝑄 ) )  ↔  ( 𝑦  ∈  ℕ  ∧  ( 𝑦  ≤  𝑁  ∧  ( 𝑦  ·  𝑃 )  <  ( ( 𝑃  −  ( 2  ·  𝑢 ) )  ·  𝑄 ) ) ) ) | 
						
							| 235 | 24 | peano2zd | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  ( ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) )  +  1 )  ∈  ℤ ) | 
						
							| 236 | 235 | zred | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  ( ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) )  +  1 )  ∈  ℝ ) | 
						
							| 237 | 236 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  ∧  𝑦  ∈  ℕ )  →  ( ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) )  +  1 )  ∈  ℝ ) | 
						
							| 238 | 13 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  ∧  𝑦  ∈  ℕ )  →  𝑄  ∈  ℝ ) | 
						
							| 239 |  | nnre | ⊢ ( 𝑦  ∈  ℕ  →  𝑦  ∈  ℝ ) | 
						
							| 240 | 239 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  ∧  𝑦  ∈  ℕ )  →  𝑦  ∈  ℝ ) | 
						
							| 241 |  | lesub | ⊢ ( ( ( ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) )  +  1 )  ∈  ℝ  ∧  𝑄  ∈  ℝ  ∧  𝑦  ∈  ℝ )  →  ( ( ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) )  +  1 )  ≤  ( 𝑄  −  𝑦 )  ↔  𝑦  ≤  ( 𝑄  −  ( ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) )  +  1 ) ) ) ) | 
						
							| 242 | 237 238 240 241 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  ∧  𝑦  ∈  ℕ )  →  ( ( ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) )  +  1 )  ≤  ( 𝑄  −  𝑦 )  ↔  𝑦  ≤  ( 𝑄  −  ( ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) )  +  1 ) ) ) ) | 
						
							| 243 | 13 | adantr | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  𝑄  ∈  ℝ ) | 
						
							| 244 | 243 | recnd | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  𝑄  ∈  ℂ ) | 
						
							| 245 | 66 244 | mulcomd | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  ( 𝑃  ·  𝑄 )  =  ( 𝑄  ·  𝑃 ) ) | 
						
							| 246 | 68 244 | mulcomd | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  ( ( 2  ·  𝑢 )  ·  𝑄 )  =  ( 𝑄  ·  ( 2  ·  𝑢 ) ) ) | 
						
							| 247 | 65 | nnne0d | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  𝑃  ≠  0 ) | 
						
							| 248 | 244 66 247 | divcan1d | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  ( ( 𝑄  /  𝑃 )  ·  𝑃 )  =  𝑄 ) | 
						
							| 249 | 248 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  ( ( ( 𝑄  /  𝑃 )  ·  𝑃 )  ·  ( 2  ·  𝑢 ) )  =  ( 𝑄  ·  ( 2  ·  𝑢 ) ) ) | 
						
							| 250 | 16 | recnd | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  ( 𝑄  /  𝑃 )  ∈  ℂ ) | 
						
							| 251 | 250 66 68 | mul32d | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  ( ( ( 𝑄  /  𝑃 )  ·  𝑃 )  ·  ( 2  ·  𝑢 ) )  =  ( ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) )  ·  𝑃 ) ) | 
						
							| 252 | 246 249 251 | 3eqtr2d | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  ( ( 2  ·  𝑢 )  ·  𝑄 )  =  ( ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) )  ·  𝑃 ) ) | 
						
							| 253 | 245 252 | oveq12d | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  ( ( 𝑃  ·  𝑄 )  −  ( ( 2  ·  𝑢 )  ·  𝑄 ) )  =  ( ( 𝑄  ·  𝑃 )  −  ( ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) )  ·  𝑃 ) ) ) | 
						
							| 254 | 66 68 244 | subdird | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  ( ( 𝑃  −  ( 2  ·  𝑢 ) )  ·  𝑄 )  =  ( ( 𝑃  ·  𝑄 )  −  ( ( 2  ·  𝑢 )  ·  𝑄 ) ) ) | 
						
							| 255 | 23 | recnd | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) )  ∈  ℂ ) | 
						
							| 256 | 244 255 66 | subdird | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  ( ( 𝑄  −  ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) )  ·  𝑃 )  =  ( ( 𝑄  ·  𝑃 )  −  ( ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) )  ·  𝑃 ) ) ) | 
						
							| 257 | 253 254 256 | 3eqtr4d | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  ( ( 𝑃  −  ( 2  ·  𝑢 ) )  ·  𝑄 )  =  ( ( 𝑄  −  ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) )  ·  𝑃 ) ) | 
						
							| 258 | 257 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  ∧  𝑦  ∈  ℕ )  →  ( ( 𝑃  −  ( 2  ·  𝑢 ) )  ·  𝑄 )  =  ( ( 𝑄  −  ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) )  ·  𝑃 ) ) | 
						
							| 259 | 258 | breq2d | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  ∧  𝑦  ∈  ℕ )  →  ( ( 𝑦  ·  𝑃 )  <  ( ( 𝑃  −  ( 2  ·  𝑢 ) )  ·  𝑄 )  ↔  ( 𝑦  ·  𝑃 )  <  ( ( 𝑄  −  ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) )  ·  𝑃 ) ) ) | 
						
							| 260 | 23 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  ∧  𝑦  ∈  ℕ )  →  ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) )  ∈  ℝ ) | 
						
							| 261 | 238 260 | resubcld | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  ∧  𝑦  ∈  ℕ )  →  ( 𝑄  −  ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) )  ∈  ℝ ) | 
						
							| 262 | 65 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  ∧  𝑦  ∈  ℕ )  →  𝑃  ∈  ℕ ) | 
						
							| 263 | 262 | nnred | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  ∧  𝑦  ∈  ℕ )  →  𝑃  ∈  ℝ ) | 
						
							| 264 | 262 | nngt0d | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  ∧  𝑦  ∈  ℕ )  →  0  <  𝑃 ) | 
						
							| 265 |  | ltmul1 | ⊢ ( ( 𝑦  ∈  ℝ  ∧  ( 𝑄  −  ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) )  ∈  ℝ  ∧  ( 𝑃  ∈  ℝ  ∧  0  <  𝑃 ) )  →  ( 𝑦  <  ( 𝑄  −  ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) )  ↔  ( 𝑦  ·  𝑃 )  <  ( ( 𝑄  −  ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) )  ·  𝑃 ) ) ) | 
						
							| 266 | 240 261 263 264 265 | syl112anc | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  ∧  𝑦  ∈  ℕ )  →  ( 𝑦  <  ( 𝑄  −  ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) )  ↔  ( 𝑦  ·  𝑃 )  <  ( ( 𝑄  −  ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) )  ·  𝑃 ) ) ) | 
						
							| 267 |  | ltsub13 | ⊢ ( ( 𝑦  ∈  ℝ  ∧  𝑄  ∈  ℝ  ∧  ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) )  ∈  ℝ )  →  ( 𝑦  <  ( 𝑄  −  ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) )  ↔  ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) )  <  ( 𝑄  −  𝑦 ) ) ) | 
						
							| 268 | 240 238 260 267 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  ∧  𝑦  ∈  ℕ )  →  ( 𝑦  <  ( 𝑄  −  ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) )  ↔  ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) )  <  ( 𝑄  −  𝑦 ) ) ) | 
						
							| 269 | 259 266 268 | 3bitr2d | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  ∧  𝑦  ∈  ℕ )  →  ( ( 𝑦  ·  𝑃 )  <  ( ( 𝑃  −  ( 2  ·  𝑢 ) )  ·  𝑄 )  ↔  ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) )  <  ( 𝑄  −  𝑦 ) ) ) | 
						
							| 270 | 12 | adantr | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  𝑄  ∈  ℕ ) | 
						
							| 271 | 270 | nnzd | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  𝑄  ∈  ℤ ) | 
						
							| 272 |  | nnz | ⊢ ( 𝑦  ∈  ℕ  →  𝑦  ∈  ℤ ) | 
						
							| 273 |  | zsubcl | ⊢ ( ( 𝑄  ∈  ℤ  ∧  𝑦  ∈  ℤ )  →  ( 𝑄  −  𝑦 )  ∈  ℤ ) | 
						
							| 274 | 271 272 273 | syl2an | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  ∧  𝑦  ∈  ℕ )  →  ( 𝑄  −  𝑦 )  ∈  ℤ ) | 
						
							| 275 |  | fllt | ⊢ ( ( ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) )  ∈  ℝ  ∧  ( 𝑄  −  𝑦 )  ∈  ℤ )  →  ( ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) )  <  ( 𝑄  −  𝑦 )  ↔  ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) )  <  ( 𝑄  −  𝑦 ) ) ) | 
						
							| 276 | 260 274 275 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  ∧  𝑦  ∈  ℕ )  →  ( ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) )  <  ( 𝑄  −  𝑦 )  ↔  ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) )  <  ( 𝑄  −  𝑦 ) ) ) | 
						
							| 277 | 24 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  ∧  𝑦  ∈  ℕ )  →  ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) )  ∈  ℤ ) | 
						
							| 278 |  | zltp1le | ⊢ ( ( ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) )  ∈  ℤ  ∧  ( 𝑄  −  𝑦 )  ∈  ℤ )  →  ( ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) )  <  ( 𝑄  −  𝑦 )  ↔  ( ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) )  +  1 )  ≤  ( 𝑄  −  𝑦 ) ) ) | 
						
							| 279 | 277 274 278 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  ∧  𝑦  ∈  ℕ )  →  ( ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) )  <  ( 𝑄  −  𝑦 )  ↔  ( ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) )  +  1 )  ≤  ( 𝑄  −  𝑦 ) ) ) | 
						
							| 280 | 269 276 279 | 3bitrd | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  ∧  𝑦  ∈  ℕ )  →  ( ( 𝑦  ·  𝑃 )  <  ( ( 𝑃  −  ( 2  ·  𝑢 ) )  ·  𝑄 )  ↔  ( ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) )  +  1 )  ≤  ( 𝑄  −  𝑦 ) ) ) | 
						
							| 281 | 5 | oveq2i | ⊢ ( 2  ·  𝑁 )  =  ( 2  ·  ( ( 𝑄  −  1 )  /  2 ) ) | 
						
							| 282 |  | peano2rem | ⊢ ( 𝑄  ∈  ℝ  →  ( 𝑄  −  1 )  ∈  ℝ ) | 
						
							| 283 | 243 282 | syl | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  ( 𝑄  −  1 )  ∈  ℝ ) | 
						
							| 284 | 283 | recnd | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  ( 𝑄  −  1 )  ∈  ℂ ) | 
						
							| 285 |  | 2cnd | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  2  ∈  ℂ ) | 
						
							| 286 | 76 | a1i | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  2  ≠  0 ) | 
						
							| 287 | 284 285 286 | divcan2d | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  ( 2  ·  ( ( 𝑄  −  1 )  /  2 ) )  =  ( 𝑄  −  1 ) ) | 
						
							| 288 | 281 287 | eqtrid | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  ( 2  ·  𝑁 )  =  ( 𝑄  −  1 ) ) | 
						
							| 289 | 288 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  ( ( 2  ·  𝑁 )  −  ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) )  =  ( ( 𝑄  −  1 )  −  ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) ) ) | 
						
							| 290 |  | 1cnd | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  1  ∈  ℂ ) | 
						
							| 291 | 24 | zcnd | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) )  ∈  ℂ ) | 
						
							| 292 | 244 290 291 | sub32d | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  ( ( 𝑄  −  1 )  −  ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) )  =  ( ( 𝑄  −  ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) )  −  1 ) ) | 
						
							| 293 | 244 291 290 | subsub4d | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  ( ( 𝑄  −  ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) )  −  1 )  =  ( 𝑄  −  ( ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) )  +  1 ) ) ) | 
						
							| 294 | 289 292 293 | 3eqtrd | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  ( ( 2  ·  𝑁 )  −  ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) )  =  ( 𝑄  −  ( ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) )  +  1 ) ) ) | 
						
							| 295 | 294 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  ∧  𝑦  ∈  ℕ )  →  ( ( 2  ·  𝑁 )  −  ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) )  =  ( 𝑄  −  ( ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) )  +  1 ) ) ) | 
						
							| 296 | 295 | breq2d | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  ∧  𝑦  ∈  ℕ )  →  ( 𝑦  ≤  ( ( 2  ·  𝑁 )  −  ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) )  ↔  𝑦  ≤  ( 𝑄  −  ( ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) )  +  1 ) ) ) ) | 
						
							| 297 | 242 280 296 | 3bitr4d | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  ∧  𝑦  ∈  ℕ )  →  ( ( 𝑦  ·  𝑃 )  <  ( ( 𝑃  −  ( 2  ·  𝑢 ) )  ·  𝑄 )  ↔  𝑦  ≤  ( ( 2  ·  𝑁 )  −  ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) ) ) ) | 
						
							| 298 | 297 | anbi2d | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  ∧  𝑦  ∈  ℕ )  →  ( ( 𝑦  ≤  𝑁  ∧  ( 𝑦  ·  𝑃 )  <  ( ( 𝑃  −  ( 2  ·  𝑢 ) )  ·  𝑄 ) )  ↔  ( 𝑦  ≤  𝑁  ∧  𝑦  ≤  ( ( 2  ·  𝑁 )  −  ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) ) ) ) ) | 
						
							| 299 |  | 2nn | ⊢ 2  ∈  ℕ | 
						
							| 300 | 2 5 | gausslemma2dlem0b | ⊢ ( 𝜑  →  𝑁  ∈  ℕ ) | 
						
							| 301 |  | nnmulcl | ⊢ ( ( 2  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( 2  ·  𝑁 )  ∈  ℕ ) | 
						
							| 302 | 299 300 301 | sylancr | ⊢ ( 𝜑  →  ( 2  ·  𝑁 )  ∈  ℕ ) | 
						
							| 303 | 302 | adantr | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  ( 2  ·  𝑁 )  ∈  ℕ ) | 
						
							| 304 | 303 | nnred | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  ( 2  ·  𝑁 )  ∈  ℝ ) | 
						
							| 305 | 300 | adantr | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  𝑁  ∈  ℕ ) | 
						
							| 306 | 305 | nnred | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  𝑁  ∈  ℝ ) | 
						
							| 307 | 24 | zred | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) )  ∈  ℝ ) | 
						
							| 308 | 300 | nncnd | ⊢ ( 𝜑  →  𝑁  ∈  ℂ ) | 
						
							| 309 | 308 | adantr | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  𝑁  ∈  ℂ ) | 
						
							| 310 | 309 | 2timesd | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  ( 2  ·  𝑁 )  =  ( 𝑁  +  𝑁 ) ) | 
						
							| 311 | 309 309 310 | mvrladdd | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  ( ( 2  ·  𝑁 )  −  𝑁 )  =  𝑁 ) | 
						
							| 312 | 243 | rehalfcld | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  ( 𝑄  /  2 )  ∈  ℝ ) | 
						
							| 313 | 243 | ltm1d | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  ( 𝑄  −  1 )  <  𝑄 ) | 
						
							| 314 | 152 | a1i | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  2  ∈  ℝ ) | 
						
							| 315 | 154 | a1i | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  0  <  2 ) | 
						
							| 316 |  | ltdiv1 | ⊢ ( ( ( 𝑄  −  1 )  ∈  ℝ  ∧  𝑄  ∈  ℝ  ∧  ( 2  ∈  ℝ  ∧  0  <  2 ) )  →  ( ( 𝑄  −  1 )  <  𝑄  ↔  ( ( 𝑄  −  1 )  /  2 )  <  ( 𝑄  /  2 ) ) ) | 
						
							| 317 | 283 243 314 315 316 | syl112anc | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  ( ( 𝑄  −  1 )  <  𝑄  ↔  ( ( 𝑄  −  1 )  /  2 )  <  ( 𝑄  /  2 ) ) ) | 
						
							| 318 | 313 317 | mpbid | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  ( ( 𝑄  −  1 )  /  2 )  <  ( 𝑄  /  2 ) ) | 
						
							| 319 | 5 318 | eqbrtrid | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  𝑁  <  ( 𝑄  /  2 ) ) | 
						
							| 320 | 306 312 319 | ltled | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  𝑁  ≤  ( 𝑄  /  2 ) ) | 
						
							| 321 | 244 285 66 286 | div32d | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  ( ( 𝑄  /  2 )  ·  𝑃 )  =  ( 𝑄  ·  ( 𝑃  /  2 ) ) ) | 
						
							| 322 | 126 | adantr | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  𝑀  ∈  ℝ ) | 
						
							| 323 | 322 | rehalfcld | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  ( 𝑀  /  2 )  ∈  ℝ ) | 
						
							| 324 |  | peano2re | ⊢ ( ( ⌊ ‘ ( 𝑀  /  2 ) )  ∈  ℝ  →  ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 )  ∈  ℝ ) | 
						
							| 325 | 323 135 324 | 3syl | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 )  ∈  ℝ ) | 
						
							| 326 | 19 | zred | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  𝑢  ∈  ℝ ) | 
						
							| 327 |  | flltp1 | ⊢ ( ( 𝑀  /  2 )  ∈  ℝ  →  ( 𝑀  /  2 )  <  ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ) | 
						
							| 328 | 323 327 | syl | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  ( 𝑀  /  2 )  <  ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ) | 
						
							| 329 |  | elfzle1 | ⊢ ( 𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 )  →  ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 )  ≤  𝑢 ) | 
						
							| 330 | 329 | adantl | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 )  ≤  𝑢 ) | 
						
							| 331 | 323 325 326 328 330 | ltletrd | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  ( 𝑀  /  2 )  <  𝑢 ) | 
						
							| 332 |  | ltdivmul | ⊢ ( ( 𝑀  ∈  ℝ  ∧  𝑢  ∈  ℝ  ∧  ( 2  ∈  ℝ  ∧  0  <  2 ) )  →  ( ( 𝑀  /  2 )  <  𝑢  ↔  𝑀  <  ( 2  ·  𝑢 ) ) ) | 
						
							| 333 | 322 326 314 315 332 | syl112anc | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  ( ( 𝑀  /  2 )  <  𝑢  ↔  𝑀  <  ( 2  ·  𝑢 ) ) ) | 
						
							| 334 | 331 333 | mpbid | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  𝑀  <  ( 2  ·  𝑢 ) ) | 
						
							| 335 | 4 334 | eqbrtrrid | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  ( ( 𝑃  −  1 )  /  2 )  <  ( 2  ·  𝑢 ) ) | 
						
							| 336 | 65 | nnred | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  𝑃  ∈  ℝ ) | 
						
							| 337 |  | peano2rem | ⊢ ( 𝑃  ∈  ℝ  →  ( 𝑃  −  1 )  ∈  ℝ ) | 
						
							| 338 | 336 337 | syl | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  ( 𝑃  −  1 )  ∈  ℝ ) | 
						
							| 339 |  | ltdivmul | ⊢ ( ( ( 𝑃  −  1 )  ∈  ℝ  ∧  ( 2  ·  𝑢 )  ∈  ℝ  ∧  ( 2  ∈  ℝ  ∧  0  <  2 ) )  →  ( ( ( 𝑃  −  1 )  /  2 )  <  ( 2  ·  𝑢 )  ↔  ( 𝑃  −  1 )  <  ( 2  ·  ( 2  ·  𝑢 ) ) ) ) | 
						
							| 340 | 338 22 314 315 339 | syl112anc | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  ( ( ( 𝑃  −  1 )  /  2 )  <  ( 2  ·  𝑢 )  ↔  ( 𝑃  −  1 )  <  ( 2  ·  ( 2  ·  𝑢 ) ) ) ) | 
						
							| 341 | 335 340 | mpbid | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  ( 𝑃  −  1 )  <  ( 2  ·  ( 2  ·  𝑢 ) ) ) | 
						
							| 342 | 204 | adantr | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  𝑃  ∈  ℤ ) | 
						
							| 343 |  | zmulcl | ⊢ ( ( 2  ∈  ℤ  ∧  ( 2  ·  𝑢 )  ∈  ℤ )  →  ( 2  ·  ( 2  ·  𝑢 ) )  ∈  ℤ ) | 
						
							| 344 | 17 21 343 | sylancr | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  ( 2  ·  ( 2  ·  𝑢 ) )  ∈  ℤ ) | 
						
							| 345 |  | zlem1lt | ⊢ ( ( 𝑃  ∈  ℤ  ∧  ( 2  ·  ( 2  ·  𝑢 ) )  ∈  ℤ )  →  ( 𝑃  ≤  ( 2  ·  ( 2  ·  𝑢 ) )  ↔  ( 𝑃  −  1 )  <  ( 2  ·  ( 2  ·  𝑢 ) ) ) ) | 
						
							| 346 | 342 344 345 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  ( 𝑃  ≤  ( 2  ·  ( 2  ·  𝑢 ) )  ↔  ( 𝑃  −  1 )  <  ( 2  ·  ( 2  ·  𝑢 ) ) ) ) | 
						
							| 347 | 341 346 | mpbird | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  𝑃  ≤  ( 2  ·  ( 2  ·  𝑢 ) ) ) | 
						
							| 348 |  | ledivmul | ⊢ ( ( 𝑃  ∈  ℝ  ∧  ( 2  ·  𝑢 )  ∈  ℝ  ∧  ( 2  ∈  ℝ  ∧  0  <  2 ) )  →  ( ( 𝑃  /  2 )  ≤  ( 2  ·  𝑢 )  ↔  𝑃  ≤  ( 2  ·  ( 2  ·  𝑢 ) ) ) ) | 
						
							| 349 | 336 22 314 315 348 | syl112anc | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  ( ( 𝑃  /  2 )  ≤  ( 2  ·  𝑢 )  ↔  𝑃  ≤  ( 2  ·  ( 2  ·  𝑢 ) ) ) ) | 
						
							| 350 | 347 349 | mpbird | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  ( 𝑃  /  2 )  ≤  ( 2  ·  𝑢 ) ) | 
						
							| 351 | 336 | rehalfcld | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  ( 𝑃  /  2 )  ∈  ℝ ) | 
						
							| 352 | 270 | nngt0d | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  0  <  𝑄 ) | 
						
							| 353 |  | lemul2 | ⊢ ( ( ( 𝑃  /  2 )  ∈  ℝ  ∧  ( 2  ·  𝑢 )  ∈  ℝ  ∧  ( 𝑄  ∈  ℝ  ∧  0  <  𝑄 ) )  →  ( ( 𝑃  /  2 )  ≤  ( 2  ·  𝑢 )  ↔  ( 𝑄  ·  ( 𝑃  /  2 ) )  ≤  ( 𝑄  ·  ( 2  ·  𝑢 ) ) ) ) | 
						
							| 354 | 351 22 243 352 353 | syl112anc | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  ( ( 𝑃  /  2 )  ≤  ( 2  ·  𝑢 )  ↔  ( 𝑄  ·  ( 𝑃  /  2 ) )  ≤  ( 𝑄  ·  ( 2  ·  𝑢 ) ) ) ) | 
						
							| 355 | 350 354 | mpbid | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  ( 𝑄  ·  ( 𝑃  /  2 ) )  ≤  ( 𝑄  ·  ( 2  ·  𝑢 ) ) ) | 
						
							| 356 | 321 355 | eqbrtrd | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  ( ( 𝑄  /  2 )  ·  𝑃 )  ≤  ( 𝑄  ·  ( 2  ·  𝑢 ) ) ) | 
						
							| 357 | 243 22 | remulcld | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  ( 𝑄  ·  ( 2  ·  𝑢 ) )  ∈  ℝ ) | 
						
							| 358 | 65 | nngt0d | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  0  <  𝑃 ) | 
						
							| 359 |  | lemuldiv | ⊢ ( ( ( 𝑄  /  2 )  ∈  ℝ  ∧  ( 𝑄  ·  ( 2  ·  𝑢 ) )  ∈  ℝ  ∧  ( 𝑃  ∈  ℝ  ∧  0  <  𝑃 ) )  →  ( ( ( 𝑄  /  2 )  ·  𝑃 )  ≤  ( 𝑄  ·  ( 2  ·  𝑢 ) )  ↔  ( 𝑄  /  2 )  ≤  ( ( 𝑄  ·  ( 2  ·  𝑢 ) )  /  𝑃 ) ) ) | 
						
							| 360 | 312 357 336 358 359 | syl112anc | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  ( ( ( 𝑄  /  2 )  ·  𝑃 )  ≤  ( 𝑄  ·  ( 2  ·  𝑢 ) )  ↔  ( 𝑄  /  2 )  ≤  ( ( 𝑄  ·  ( 2  ·  𝑢 ) )  /  𝑃 ) ) ) | 
						
							| 361 | 356 360 | mpbid | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  ( 𝑄  /  2 )  ≤  ( ( 𝑄  ·  ( 2  ·  𝑢 ) )  /  𝑃 ) ) | 
						
							| 362 | 244 68 66 247 | div23d | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  ( ( 𝑄  ·  ( 2  ·  𝑢 ) )  /  𝑃 )  =  ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) | 
						
							| 363 | 361 362 | breqtrd | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  ( 𝑄  /  2 )  ≤  ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) | 
						
							| 364 | 306 312 23 320 363 | letrd | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  𝑁  ≤  ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) | 
						
							| 365 | 300 | nnzd | ⊢ ( 𝜑  →  𝑁  ∈  ℤ ) | 
						
							| 366 | 365 | adantr | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  𝑁  ∈  ℤ ) | 
						
							| 367 |  | flge | ⊢ ( ( ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) )  ∈  ℝ  ∧  𝑁  ∈  ℤ )  →  ( 𝑁  ≤  ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) )  ↔  𝑁  ≤  ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) ) ) | 
						
							| 368 | 23 366 367 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  ( 𝑁  ≤  ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) )  ↔  𝑁  ≤  ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) ) ) | 
						
							| 369 | 364 368 | mpbid | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  𝑁  ≤  ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) ) | 
						
							| 370 | 311 369 | eqbrtrd | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  ( ( 2  ·  𝑁 )  −  𝑁 )  ≤  ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) ) | 
						
							| 371 | 304 306 307 370 | subled | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  ( ( 2  ·  𝑁 )  −  ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) )  ≤  𝑁 ) | 
						
							| 372 | 371 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  ∧  𝑦  ∈  ℕ )  →  ( ( 2  ·  𝑁 )  −  ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) )  ≤  𝑁 ) | 
						
							| 373 | 303 | nnzd | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  ( 2  ·  𝑁 )  ∈  ℤ ) | 
						
							| 374 | 373 24 | zsubcld | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  ( ( 2  ·  𝑁 )  −  ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) )  ∈  ℤ ) | 
						
							| 375 | 374 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  ∧  𝑦  ∈  ℕ )  →  ( ( 2  ·  𝑁 )  −  ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) )  ∈  ℤ ) | 
						
							| 376 | 375 | zred | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  ∧  𝑦  ∈  ℕ )  →  ( ( 2  ·  𝑁 )  −  ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) )  ∈  ℝ ) | 
						
							| 377 | 300 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  ∧  𝑦  ∈  ℕ )  →  𝑁  ∈  ℕ ) | 
						
							| 378 | 377 | nnred | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  ∧  𝑦  ∈  ℕ )  →  𝑁  ∈  ℝ ) | 
						
							| 379 |  | letr | ⊢ ( ( 𝑦  ∈  ℝ  ∧  ( ( 2  ·  𝑁 )  −  ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) )  ∈  ℝ  ∧  𝑁  ∈  ℝ )  →  ( ( 𝑦  ≤  ( ( 2  ·  𝑁 )  −  ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) )  ∧  ( ( 2  ·  𝑁 )  −  ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) )  ≤  𝑁 )  →  𝑦  ≤  𝑁 ) ) | 
						
							| 380 | 240 376 378 379 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  ∧  𝑦  ∈  ℕ )  →  ( ( 𝑦  ≤  ( ( 2  ·  𝑁 )  −  ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) )  ∧  ( ( 2  ·  𝑁 )  −  ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) )  ≤  𝑁 )  →  𝑦  ≤  𝑁 ) ) | 
						
							| 381 | 372 380 | mpan2d | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  ∧  𝑦  ∈  ℕ )  →  ( 𝑦  ≤  ( ( 2  ·  𝑁 )  −  ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) )  →  𝑦  ≤  𝑁 ) ) | 
						
							| 382 | 381 | pm4.71rd | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  ∧  𝑦  ∈  ℕ )  →  ( 𝑦  ≤  ( ( 2  ·  𝑁 )  −  ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) )  ↔  ( 𝑦  ≤  𝑁  ∧  𝑦  ≤  ( ( 2  ·  𝑁 )  −  ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) ) ) ) ) | 
						
							| 383 | 298 382 | bitr4d | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  ∧  𝑦  ∈  ℕ )  →  ( ( 𝑦  ≤  𝑁  ∧  ( 𝑦  ·  𝑃 )  <  ( ( 𝑃  −  ( 2  ·  𝑢 ) )  ·  𝑄 ) )  ↔  𝑦  ≤  ( ( 2  ·  𝑁 )  −  ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) ) ) ) | 
						
							| 384 | 383 | pm5.32da | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  ( ( 𝑦  ∈  ℕ  ∧  ( 𝑦  ≤  𝑁  ∧  ( 𝑦  ·  𝑃 )  <  ( ( 𝑃  −  ( 2  ·  𝑢 ) )  ·  𝑄 ) ) )  ↔  ( 𝑦  ∈  ℕ  ∧  𝑦  ≤  ( ( 2  ·  𝑁 )  −  ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) ) ) ) ) | 
						
							| 385 | 384 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  ∧  𝑥  =  ( 𝑃  −  ( 2  ·  𝑢 ) ) )  →  ( ( 𝑦  ∈  ℕ  ∧  ( 𝑦  ≤  𝑁  ∧  ( 𝑦  ·  𝑃 )  <  ( ( 𝑃  −  ( 2  ·  𝑢 ) )  ·  𝑄 ) ) )  ↔  ( 𝑦  ∈  ℕ  ∧  𝑦  ≤  ( ( 2  ·  𝑁 )  −  ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) ) ) ) ) | 
						
							| 386 | 234 385 | bitrid | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  ∧  𝑥  =  ( 𝑃  −  ( 2  ·  𝑢 ) ) )  →  ( ( ( 𝑦  ∈  ℕ  ∧  𝑦  ≤  𝑁 )  ∧  ( 𝑦  ·  𝑃 )  <  ( ( 𝑃  −  ( 2  ·  𝑢 ) )  ·  𝑄 ) )  ↔  ( 𝑦  ∈  ℕ  ∧  𝑦  ≤  ( ( 2  ·  𝑁 )  −  ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) ) ) ) ) | 
						
							| 387 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  ∧  𝑥  =  ( 𝑃  −  ( 2  ·  𝑢 ) ) )  →  𝑥  =  ( 𝑃  −  ( 2  ·  𝑢 ) ) ) | 
						
							| 388 | 342 21 | zsubcld | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  ( 𝑃  −  ( 2  ·  𝑢 ) )  ∈  ℤ ) | 
						
							| 389 |  | elfzle2 | ⊢ ( 𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 )  →  𝑢  ≤  𝑀 ) | 
						
							| 390 | 389 | adantl | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  𝑢  ≤  𝑀 ) | 
						
							| 391 | 390 4 | breqtrdi | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  𝑢  ≤  ( ( 𝑃  −  1 )  /  2 ) ) | 
						
							| 392 |  | lemuldiv2 | ⊢ ( ( 𝑢  ∈  ℝ  ∧  ( 𝑃  −  1 )  ∈  ℝ  ∧  ( 2  ∈  ℝ  ∧  0  <  2 ) )  →  ( ( 2  ·  𝑢 )  ≤  ( 𝑃  −  1 )  ↔  𝑢  ≤  ( ( 𝑃  −  1 )  /  2 ) ) ) | 
						
							| 393 | 326 338 314 315 392 | syl112anc | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  ( ( 2  ·  𝑢 )  ≤  ( 𝑃  −  1 )  ↔  𝑢  ≤  ( ( 𝑃  −  1 )  /  2 ) ) ) | 
						
							| 394 | 391 393 | mpbird | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  ( 2  ·  𝑢 )  ≤  ( 𝑃  −  1 ) ) | 
						
							| 395 | 336 | ltm1d | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  ( 𝑃  −  1 )  <  𝑃 ) | 
						
							| 396 | 22 338 336 394 395 | lelttrd | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  ( 2  ·  𝑢 )  <  𝑃 ) | 
						
							| 397 | 22 336 | posdifd | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  ( ( 2  ·  𝑢 )  <  𝑃  ↔  0  <  ( 𝑃  −  ( 2  ·  𝑢 ) ) ) ) | 
						
							| 398 | 396 397 | mpbid | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  0  <  ( 𝑃  −  ( 2  ·  𝑢 ) ) ) | 
						
							| 399 |  | elnnz | ⊢ ( ( 𝑃  −  ( 2  ·  𝑢 ) )  ∈  ℕ  ↔  ( ( 𝑃  −  ( 2  ·  𝑢 ) )  ∈  ℤ  ∧  0  <  ( 𝑃  −  ( 2  ·  𝑢 ) ) ) ) | 
						
							| 400 | 388 398 399 | sylanbrc | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  ( 𝑃  −  ( 2  ·  𝑢 ) )  ∈  ℕ ) | 
						
							| 401 | 66 68 290 | sub32d | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  ( ( 𝑃  −  ( 2  ·  𝑢 ) )  −  1 )  =  ( ( 𝑃  −  1 )  −  ( 2  ·  𝑢 ) ) ) | 
						
							| 402 | 4 4 | oveq12i | ⊢ ( 𝑀  +  𝑀 )  =  ( ( ( 𝑃  −  1 )  /  2 )  +  ( ( 𝑃  −  1 )  /  2 ) ) | 
						
							| 403 | 65 | nnzd | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  𝑃  ∈  ℤ ) | 
						
							| 404 | 403 206 | syl | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  ( 𝑃  −  1 )  ∈  ℤ ) | 
						
							| 405 | 404 | zcnd | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  ( 𝑃  −  1 )  ∈  ℂ ) | 
						
							| 406 | 405 | 2halvesd | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  ( ( ( 𝑃  −  1 )  /  2 )  +  ( ( 𝑃  −  1 )  /  2 ) )  =  ( 𝑃  −  1 ) ) | 
						
							| 407 | 402 406 | eqtrid | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  ( 𝑀  +  𝑀 )  =  ( 𝑃  −  1 ) ) | 
						
							| 408 | 407 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  ( ( 𝑀  +  𝑀 )  −  𝑀 )  =  ( ( 𝑃  −  1 )  −  𝑀 ) ) | 
						
							| 409 | 160 | adantr | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  𝑀  ∈  ℂ ) | 
						
							| 410 | 409 409 | pncan2d | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  ( ( 𝑀  +  𝑀 )  −  𝑀 )  =  𝑀 ) | 
						
							| 411 | 408 410 | eqtr3d | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  ( ( 𝑃  −  1 )  −  𝑀 )  =  𝑀 ) | 
						
							| 412 | 411 334 | eqbrtrd | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  ( ( 𝑃  −  1 )  −  𝑀 )  <  ( 2  ·  𝑢 ) ) | 
						
							| 413 | 338 322 22 412 | ltsub23d | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  ( ( 𝑃  −  1 )  −  ( 2  ·  𝑢 ) )  <  𝑀 ) | 
						
							| 414 | 401 413 | eqbrtrd | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  ( ( 𝑃  −  ( 2  ·  𝑢 ) )  −  1 )  <  𝑀 ) | 
						
							| 415 | 125 | adantr | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  𝑀  ∈  ℕ ) | 
						
							| 416 | 415 | nnzd | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  𝑀  ∈  ℤ ) | 
						
							| 417 |  | zlem1lt | ⊢ ( ( ( 𝑃  −  ( 2  ·  𝑢 ) )  ∈  ℤ  ∧  𝑀  ∈  ℤ )  →  ( ( 𝑃  −  ( 2  ·  𝑢 ) )  ≤  𝑀  ↔  ( ( 𝑃  −  ( 2  ·  𝑢 ) )  −  1 )  <  𝑀 ) ) | 
						
							| 418 | 388 416 417 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  ( ( 𝑃  −  ( 2  ·  𝑢 ) )  ≤  𝑀  ↔  ( ( 𝑃  −  ( 2  ·  𝑢 ) )  −  1 )  <  𝑀 ) ) | 
						
							| 419 | 414 418 | mpbird | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  ( 𝑃  −  ( 2  ·  𝑢 ) )  ≤  𝑀 ) | 
						
							| 420 |  | fznn | ⊢ ( 𝑀  ∈  ℤ  →  ( ( 𝑃  −  ( 2  ·  𝑢 ) )  ∈  ( 1 ... 𝑀 )  ↔  ( ( 𝑃  −  ( 2  ·  𝑢 ) )  ∈  ℕ  ∧  ( 𝑃  −  ( 2  ·  𝑢 ) )  ≤  𝑀 ) ) ) | 
						
							| 421 | 416 420 | syl | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  ( ( 𝑃  −  ( 2  ·  𝑢 ) )  ∈  ( 1 ... 𝑀 )  ↔  ( ( 𝑃  −  ( 2  ·  𝑢 ) )  ∈  ℕ  ∧  ( 𝑃  −  ( 2  ·  𝑢 ) )  ≤  𝑀 ) ) ) | 
						
							| 422 | 400 419 421 | mpbir2and | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  ( 𝑃  −  ( 2  ·  𝑢 ) )  ∈  ( 1 ... 𝑀 ) ) | 
						
							| 423 | 422 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  ∧  𝑥  =  ( 𝑃  −  ( 2  ·  𝑢 ) ) )  →  ( 𝑃  −  ( 2  ·  𝑢 ) )  ∈  ( 1 ... 𝑀 ) ) | 
						
							| 424 | 387 423 | eqeltrd | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  ∧  𝑥  =  ( 𝑃  −  ( 2  ·  𝑢 ) ) )  →  𝑥  ∈  ( 1 ... 𝑀 ) ) | 
						
							| 425 | 424 | biantrurd | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  ∧  𝑥  =  ( 𝑃  −  ( 2  ·  𝑢 ) ) )  →  ( 𝑦  ∈  ( 1 ... 𝑁 )  ↔  ( 𝑥  ∈  ( 1 ... 𝑀 )  ∧  𝑦  ∈  ( 1 ... 𝑁 ) ) ) ) | 
						
							| 426 | 365 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  ∧  𝑥  =  ( 𝑃  −  ( 2  ·  𝑢 ) ) )  →  𝑁  ∈  ℤ ) | 
						
							| 427 |  | fznn | ⊢ ( 𝑁  ∈  ℤ  →  ( 𝑦  ∈  ( 1 ... 𝑁 )  ↔  ( 𝑦  ∈  ℕ  ∧  𝑦  ≤  𝑁 ) ) ) | 
						
							| 428 | 426 427 | syl | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  ∧  𝑥  =  ( 𝑃  −  ( 2  ·  𝑢 ) ) )  →  ( 𝑦  ∈  ( 1 ... 𝑁 )  ↔  ( 𝑦  ∈  ℕ  ∧  𝑦  ≤  𝑁 ) ) ) | 
						
							| 429 | 425 428 | bitr3d | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  ∧  𝑥  =  ( 𝑃  −  ( 2  ·  𝑢 ) ) )  →  ( ( 𝑥  ∈  ( 1 ... 𝑀 )  ∧  𝑦  ∈  ( 1 ... 𝑁 ) )  ↔  ( 𝑦  ∈  ℕ  ∧  𝑦  ≤  𝑁 ) ) ) | 
						
							| 430 | 387 | oveq1d | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  ∧  𝑥  =  ( 𝑃  −  ( 2  ·  𝑢 ) ) )  →  ( 𝑥  ·  𝑄 )  =  ( ( 𝑃  −  ( 2  ·  𝑢 ) )  ·  𝑄 ) ) | 
						
							| 431 | 430 | breq2d | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  ∧  𝑥  =  ( 𝑃  −  ( 2  ·  𝑢 ) ) )  →  ( ( 𝑦  ·  𝑃 )  <  ( 𝑥  ·  𝑄 )  ↔  ( 𝑦  ·  𝑃 )  <  ( ( 𝑃  −  ( 2  ·  𝑢 ) )  ·  𝑄 ) ) ) | 
						
							| 432 | 429 431 | anbi12d | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  ∧  𝑥  =  ( 𝑃  −  ( 2  ·  𝑢 ) ) )  →  ( ( ( 𝑥  ∈  ( 1 ... 𝑀 )  ∧  𝑦  ∈  ( 1 ... 𝑁 ) )  ∧  ( 𝑦  ·  𝑃 )  <  ( 𝑥  ·  𝑄 ) )  ↔  ( ( 𝑦  ∈  ℕ  ∧  𝑦  ≤  𝑁 )  ∧  ( 𝑦  ·  𝑃 )  <  ( ( 𝑃  −  ( 2  ·  𝑢 ) )  ·  𝑄 ) ) ) ) | 
						
							| 433 | 374 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  ∧  𝑥  =  ( 𝑃  −  ( 2  ·  𝑢 ) ) )  →  ( ( 2  ·  𝑁 )  −  ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) )  ∈  ℤ ) | 
						
							| 434 |  | fznn | ⊢ ( ( ( 2  ·  𝑁 )  −  ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) )  ∈  ℤ  →  ( 𝑦  ∈  ( 1 ... ( ( 2  ·  𝑁 )  −  ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) ) )  ↔  ( 𝑦  ∈  ℕ  ∧  𝑦  ≤  ( ( 2  ·  𝑁 )  −  ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) ) ) ) ) | 
						
							| 435 | 433 434 | syl | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  ∧  𝑥  =  ( 𝑃  −  ( 2  ·  𝑢 ) ) )  →  ( 𝑦  ∈  ( 1 ... ( ( 2  ·  𝑁 )  −  ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) ) )  ↔  ( 𝑦  ∈  ℕ  ∧  𝑦  ≤  ( ( 2  ·  𝑁 )  −  ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) ) ) ) ) | 
						
							| 436 | 386 432 435 | 3bitr4d | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  ∧  𝑥  =  ( 𝑃  −  ( 2  ·  𝑢 ) ) )  →  ( ( ( 𝑥  ∈  ( 1 ... 𝑀 )  ∧  𝑦  ∈  ( 1 ... 𝑁 ) )  ∧  ( 𝑦  ·  𝑃 )  <  ( 𝑥  ·  𝑄 ) )  ↔  𝑦  ∈  ( 1 ... ( ( 2  ·  𝑁 )  −  ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) ) ) ) ) | 
						
							| 437 | 233 436 | bitrid | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  ∧  𝑥  =  ( 𝑃  −  ( 2  ·  𝑢 ) ) )  →  ( 〈 𝑥 ,  𝑦 〉  ∈  𝑆  ↔  𝑦  ∈  ( 1 ... ( ( 2  ·  𝑁 )  −  ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) ) ) ) ) | 
						
							| 438 | 437 | pm5.32da | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  ( ( 𝑥  =  ( 𝑃  −  ( 2  ·  𝑢 ) )  ∧  〈 𝑥 ,  𝑦 〉  ∈  𝑆 )  ↔  ( 𝑥  =  ( 𝑃  −  ( 2  ·  𝑢 ) )  ∧  𝑦  ∈  ( 1 ... ( ( 2  ·  𝑁 )  −  ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) ) ) ) ) ) | 
						
							| 439 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 440 |  | vex | ⊢ 𝑦  ∈  V | 
						
							| 441 | 439 440 | op1std | ⊢ ( 𝑧  =  〈 𝑥 ,  𝑦 〉  →  ( 1st  ‘ 𝑧 )  =  𝑥 ) | 
						
							| 442 | 441 | eqeq1d | ⊢ ( 𝑧  =  〈 𝑥 ,  𝑦 〉  →  ( ( 1st  ‘ 𝑧 )  =  ( 𝑃  −  ( 2  ·  𝑢 ) )  ↔  𝑥  =  ( 𝑃  −  ( 2  ·  𝑢 ) ) ) ) | 
						
							| 443 | 442 | elrab | ⊢ ( 〈 𝑥 ,  𝑦 〉  ∈  { 𝑧  ∈  𝑆  ∣  ( 1st  ‘ 𝑧 )  =  ( 𝑃  −  ( 2  ·  𝑢 ) ) }  ↔  ( 〈 𝑥 ,  𝑦 〉  ∈  𝑆  ∧  𝑥  =  ( 𝑃  −  ( 2  ·  𝑢 ) ) ) ) | 
						
							| 444 | 443 | biancomi | ⊢ ( 〈 𝑥 ,  𝑦 〉  ∈  { 𝑧  ∈  𝑆  ∣  ( 1st  ‘ 𝑧 )  =  ( 𝑃  −  ( 2  ·  𝑢 ) ) }  ↔  ( 𝑥  =  ( 𝑃  −  ( 2  ·  𝑢 ) )  ∧  〈 𝑥 ,  𝑦 〉  ∈  𝑆 ) ) | 
						
							| 445 |  | opelxp | ⊢ ( 〈 𝑥 ,  𝑦 〉  ∈  ( { ( 𝑃  −  ( 2  ·  𝑢 ) ) }  ×  ( 1 ... ( ( 2  ·  𝑁 )  −  ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) ) ) )  ↔  ( 𝑥  ∈  { ( 𝑃  −  ( 2  ·  𝑢 ) ) }  ∧  𝑦  ∈  ( 1 ... ( ( 2  ·  𝑁 )  −  ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) ) ) ) ) | 
						
							| 446 |  | velsn | ⊢ ( 𝑥  ∈  { ( 𝑃  −  ( 2  ·  𝑢 ) ) }  ↔  𝑥  =  ( 𝑃  −  ( 2  ·  𝑢 ) ) ) | 
						
							| 447 | 446 | anbi1i | ⊢ ( ( 𝑥  ∈  { ( 𝑃  −  ( 2  ·  𝑢 ) ) }  ∧  𝑦  ∈  ( 1 ... ( ( 2  ·  𝑁 )  −  ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) ) ) )  ↔  ( 𝑥  =  ( 𝑃  −  ( 2  ·  𝑢 ) )  ∧  𝑦  ∈  ( 1 ... ( ( 2  ·  𝑁 )  −  ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) ) ) ) ) | 
						
							| 448 | 445 447 | bitri | ⊢ ( 〈 𝑥 ,  𝑦 〉  ∈  ( { ( 𝑃  −  ( 2  ·  𝑢 ) ) }  ×  ( 1 ... ( ( 2  ·  𝑁 )  −  ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) ) ) )  ↔  ( 𝑥  =  ( 𝑃  −  ( 2  ·  𝑢 ) )  ∧  𝑦  ∈  ( 1 ... ( ( 2  ·  𝑁 )  −  ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) ) ) ) ) | 
						
							| 449 | 438 444 448 | 3bitr4g | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  ( 〈 𝑥 ,  𝑦 〉  ∈  { 𝑧  ∈  𝑆  ∣  ( 1st  ‘ 𝑧 )  =  ( 𝑃  −  ( 2  ·  𝑢 ) ) }  ↔  〈 𝑥 ,  𝑦 〉  ∈  ( { ( 𝑃  −  ( 2  ·  𝑢 ) ) }  ×  ( 1 ... ( ( 2  ·  𝑁 )  −  ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) ) ) ) ) ) | 
						
							| 450 | 229 230 449 | eqrelrdv | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  { 𝑧  ∈  𝑆  ∣  ( 1st  ‘ 𝑧 )  =  ( 𝑃  −  ( 2  ·  𝑢 ) ) }  =  ( { ( 𝑃  −  ( 2  ·  𝑢 ) ) }  ×  ( 1 ... ( ( 2  ·  𝑁 )  −  ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) ) ) ) ) | 
						
							| 451 | 450 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  ( ♯ ‘ { 𝑧  ∈  𝑆  ∣  ( 1st  ‘ 𝑧 )  =  ( 𝑃  −  ( 2  ·  𝑢 ) ) } )  =  ( ♯ ‘ ( { ( 𝑃  −  ( 2  ·  𝑢 ) ) }  ×  ( 1 ... ( ( 2  ·  𝑁 )  −  ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) ) ) ) ) ) | 
						
							| 452 |  | fzfid | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  ( 1 ... ( ( 2  ·  𝑁 )  −  ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) ) )  ∈  Fin ) | 
						
							| 453 |  | xpsnen2g | ⊢ ( ( ( 𝑃  −  ( 2  ·  𝑢 ) )  ∈  ℤ  ∧  ( 1 ... ( ( 2  ·  𝑁 )  −  ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) ) )  ∈  Fin )  →  ( { ( 𝑃  −  ( 2  ·  𝑢 ) ) }  ×  ( 1 ... ( ( 2  ·  𝑁 )  −  ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) ) ) )  ≈  ( 1 ... ( ( 2  ·  𝑁 )  −  ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) ) ) ) | 
						
							| 454 | 388 452 453 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  ( { ( 𝑃  −  ( 2  ·  𝑢 ) ) }  ×  ( 1 ... ( ( 2  ·  𝑁 )  −  ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) ) ) )  ≈  ( 1 ... ( ( 2  ·  𝑁 )  −  ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) ) ) ) | 
						
							| 455 |  | hasheni | ⊢ ( ( { ( 𝑃  −  ( 2  ·  𝑢 ) ) }  ×  ( 1 ... ( ( 2  ·  𝑁 )  −  ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) ) ) )  ≈  ( 1 ... ( ( 2  ·  𝑁 )  −  ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) ) )  →  ( ♯ ‘ ( { ( 𝑃  −  ( 2  ·  𝑢 ) ) }  ×  ( 1 ... ( ( 2  ·  𝑁 )  −  ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) ) ) ) )  =  ( ♯ ‘ ( 1 ... ( ( 2  ·  𝑁 )  −  ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) ) ) ) ) | 
						
							| 456 | 454 455 | syl | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  ( ♯ ‘ ( { ( 𝑃  −  ( 2  ·  𝑢 ) ) }  ×  ( 1 ... ( ( 2  ·  𝑁 )  −  ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) ) ) ) )  =  ( ♯ ‘ ( 1 ... ( ( 2  ·  𝑁 )  −  ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) ) ) ) ) | 
						
							| 457 |  | ltmul2 | ⊢ ( ( ( 2  ·  𝑢 )  ∈  ℝ  ∧  𝑃  ∈  ℝ  ∧  ( 𝑄  ∈  ℝ  ∧  0  <  𝑄 ) )  →  ( ( 2  ·  𝑢 )  <  𝑃  ↔  ( 𝑄  ·  ( 2  ·  𝑢 ) )  <  ( 𝑄  ·  𝑃 ) ) ) | 
						
							| 458 | 22 336 243 352 457 | syl112anc | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  ( ( 2  ·  𝑢 )  <  𝑃  ↔  ( 𝑄  ·  ( 2  ·  𝑢 ) )  <  ( 𝑄  ·  𝑃 ) ) ) | 
						
							| 459 | 396 458 | mpbid | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  ( 𝑄  ·  ( 2  ·  𝑢 ) )  <  ( 𝑄  ·  𝑃 ) ) | 
						
							| 460 |  | ltdivmul2 | ⊢ ( ( ( 𝑄  ·  ( 2  ·  𝑢 ) )  ∈  ℝ  ∧  𝑄  ∈  ℝ  ∧  ( 𝑃  ∈  ℝ  ∧  0  <  𝑃 ) )  →  ( ( ( 𝑄  ·  ( 2  ·  𝑢 ) )  /  𝑃 )  <  𝑄  ↔  ( 𝑄  ·  ( 2  ·  𝑢 ) )  <  ( 𝑄  ·  𝑃 ) ) ) | 
						
							| 461 | 357 243 336 358 460 | syl112anc | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  ( ( ( 𝑄  ·  ( 2  ·  𝑢 ) )  /  𝑃 )  <  𝑄  ↔  ( 𝑄  ·  ( 2  ·  𝑢 ) )  <  ( 𝑄  ·  𝑃 ) ) ) | 
						
							| 462 | 459 461 | mpbird | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  ( ( 𝑄  ·  ( 2  ·  𝑢 ) )  /  𝑃 )  <  𝑄 ) | 
						
							| 463 | 362 462 | eqbrtrrd | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) )  <  𝑄 ) | 
						
							| 464 |  | fllt | ⊢ ( ( ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) )  ∈  ℝ  ∧  𝑄  ∈  ℤ )  →  ( ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) )  <  𝑄  ↔  ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) )  <  𝑄 ) ) | 
						
							| 465 | 23 271 464 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  ( ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) )  <  𝑄  ↔  ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) )  <  𝑄 ) ) | 
						
							| 466 | 463 465 | mpbid | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) )  <  𝑄 ) | 
						
							| 467 |  | zltlem1 | ⊢ ( ( ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) )  ∈  ℤ  ∧  𝑄  ∈  ℤ )  →  ( ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) )  <  𝑄  ↔  ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) )  ≤  ( 𝑄  −  1 ) ) ) | 
						
							| 468 | 24 271 467 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  ( ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) )  <  𝑄  ↔  ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) )  ≤  ( 𝑄  −  1 ) ) ) | 
						
							| 469 | 466 468 | mpbid | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) )  ≤  ( 𝑄  −  1 ) ) | 
						
							| 470 | 469 288 | breqtrrd | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) )  ≤  ( 2  ·  𝑁 ) ) | 
						
							| 471 |  | eluz2 | ⊢ ( ( 2  ·  𝑁 )  ∈  ( ℤ≥ ‘ ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) )  ↔  ( ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) )  ∈  ℤ  ∧  ( 2  ·  𝑁 )  ∈  ℤ  ∧  ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) )  ≤  ( 2  ·  𝑁 ) ) ) | 
						
							| 472 | 24 373 470 471 | syl3anbrc | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  ( 2  ·  𝑁 )  ∈  ( ℤ≥ ‘ ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) ) ) | 
						
							| 473 |  | uznn0sub | ⊢ ( ( 2  ·  𝑁 )  ∈  ( ℤ≥ ‘ ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) )  →  ( ( 2  ·  𝑁 )  −  ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) )  ∈  ℕ0 ) | 
						
							| 474 |  | hashfz1 | ⊢ ( ( ( 2  ·  𝑁 )  −  ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) )  ∈  ℕ0  →  ( ♯ ‘ ( 1 ... ( ( 2  ·  𝑁 )  −  ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) ) ) )  =  ( ( 2  ·  𝑁 )  −  ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) ) ) | 
						
							| 475 | 472 473 474 | 3syl | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  ( ♯ ‘ ( 1 ... ( ( 2  ·  𝑁 )  −  ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) ) ) )  =  ( ( 2  ·  𝑁 )  −  ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) ) ) | 
						
							| 476 | 451 456 475 | 3eqtrd | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  ( ♯ ‘ { 𝑧  ∈  𝑆  ∣  ( 1st  ‘ 𝑧 )  =  ( 𝑃  −  ( 2  ·  𝑢 ) ) } )  =  ( ( 2  ·  𝑁 )  −  ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) ) ) | 
						
							| 477 | 476 | sumeq2dv | ⊢ ( 𝜑  →  Σ 𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) ( ♯ ‘ { 𝑧  ∈  𝑆  ∣  ( 1st  ‘ 𝑧 )  =  ( 𝑃  −  ( 2  ·  𝑢 ) ) } )  =  Σ 𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) ( ( 2  ·  𝑁 )  −  ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) ) ) | 
						
							| 478 | 83 226 477 | 3eqtr3rd | ⊢ ( 𝜑  →  Σ 𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) ( ( 2  ·  𝑁 )  −  ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) )  =  ( ♯ ‘ { 𝑧  ∈  𝑆  ∣  ¬  2  ∥  ( 1st  ‘ 𝑧 ) } ) ) | 
						
							| 479 | 302 | nncnd | ⊢ ( 𝜑  →  ( 2  ·  𝑁 )  ∈  ℂ ) | 
						
							| 480 | 479 | adantr | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  ( 2  ·  𝑁 )  ∈  ℂ ) | 
						
							| 481 | 11 480 291 | fsumsub | ⊢ ( 𝜑  →  Σ 𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) ( ( 2  ·  𝑁 )  −  ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) )  =  ( Σ 𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) ( 2  ·  𝑁 )  −  Σ 𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) ) ) | 
						
							| 482 | 478 481 | eqtr3d | ⊢ ( 𝜑  →  ( ♯ ‘ { 𝑧  ∈  𝑆  ∣  ¬  2  ∥  ( 1st  ‘ 𝑧 ) } )  =  ( Σ 𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) ( 2  ·  𝑁 )  −  Σ 𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) ) ) | 
						
							| 483 | 482 | oveq2d | ⊢ ( 𝜑  →  ( Σ 𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) )  +  ( ♯ ‘ { 𝑧  ∈  𝑆  ∣  ¬  2  ∥  ( 1st  ‘ 𝑧 ) } ) )  =  ( Σ 𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) )  +  ( Σ 𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) ( 2  ·  𝑁 )  −  Σ 𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) ) ) ) | 
						
							| 484 | 25 | zcnd | ⊢ ( 𝜑  →  Σ 𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) )  ∈  ℂ ) | 
						
							| 485 | 11 373 | fsumzcl | ⊢ ( 𝜑  →  Σ 𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) ( 2  ·  𝑁 )  ∈  ℤ ) | 
						
							| 486 | 485 | zcnd | ⊢ ( 𝜑  →  Σ 𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) ( 2  ·  𝑁 )  ∈  ℂ ) | 
						
							| 487 | 484 486 | pncan3d | ⊢ ( 𝜑  →  ( Σ 𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) )  +  ( Σ 𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) ( 2  ·  𝑁 )  −  Σ 𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) ) )  =  Σ 𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) ( 2  ·  𝑁 ) ) | 
						
							| 488 |  | fsumconst | ⊢ ( ( ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 )  ∈  Fin  ∧  ( 2  ·  𝑁 )  ∈  ℂ )  →  Σ 𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) ( 2  ·  𝑁 )  =  ( ( ♯ ‘ ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  ·  ( 2  ·  𝑁 ) ) ) | 
						
							| 489 | 11 479 488 | syl2anc | ⊢ ( 𝜑  →  Σ 𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) ( 2  ·  𝑁 )  =  ( ( ♯ ‘ ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  ·  ( 2  ·  𝑁 ) ) ) | 
						
							| 490 |  | hashcl | ⊢ ( ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 )  ∈  Fin  →  ( ♯ ‘ ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  ∈  ℕ0 ) | 
						
							| 491 | 11 490 | syl | ⊢ ( 𝜑  →  ( ♯ ‘ ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  ∈  ℕ0 ) | 
						
							| 492 | 491 | nn0cnd | ⊢ ( 𝜑  →  ( ♯ ‘ ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  ∈  ℂ ) | 
						
							| 493 |  | 2cnd | ⊢ ( 𝜑  →  2  ∈  ℂ ) | 
						
							| 494 | 492 493 308 | mul12d | ⊢ ( 𝜑  →  ( ( ♯ ‘ ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  ·  ( 2  ·  𝑁 ) )  =  ( 2  ·  ( ( ♯ ‘ ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  ·  𝑁 ) ) ) | 
						
							| 495 | 489 494 | eqtrd | ⊢ ( 𝜑  →  Σ 𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) ( 2  ·  𝑁 )  =  ( 2  ·  ( ( ♯ ‘ ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  ·  𝑁 ) ) ) | 
						
							| 496 | 483 487 495 | 3eqtrd | ⊢ ( 𝜑  →  ( Σ 𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) )  +  ( ♯ ‘ { 𝑧  ∈  𝑆  ∣  ¬  2  ∥  ( 1st  ‘ 𝑧 ) } ) )  =  ( 2  ·  ( ( ♯ ‘ ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  ·  𝑁 ) ) ) | 
						
							| 497 | 496 | oveq2d | ⊢ ( 𝜑  →  ( - 1 ↑ ( Σ 𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) )  +  ( ♯ ‘ { 𝑧  ∈  𝑆  ∣  ¬  2  ∥  ( 1st  ‘ 𝑧 ) } ) ) )  =  ( - 1 ↑ ( 2  ·  ( ( ♯ ‘ ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  ·  𝑁 ) ) ) ) | 
						
							| 498 | 17 | a1i | ⊢ ( 𝜑  →  2  ∈  ℤ ) | 
						
							| 499 | 491 | nn0zd | ⊢ ( 𝜑  →  ( ♯ ‘ ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  ∈  ℤ ) | 
						
							| 500 | 499 365 | zmulcld | ⊢ ( 𝜑  →  ( ( ♯ ‘ ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  ·  𝑁 )  ∈  ℤ ) | 
						
							| 501 |  | expmulz | ⊢ ( ( ( - 1  ∈  ℂ  ∧  - 1  ≠  0 )  ∧  ( 2  ∈  ℤ  ∧  ( ( ♯ ‘ ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  ·  𝑁 )  ∈  ℤ ) )  →  ( - 1 ↑ ( 2  ·  ( ( ♯ ‘ ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  ·  𝑁 ) ) )  =  ( ( - 1 ↑ 2 ) ↑ ( ( ♯ ‘ ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  ·  𝑁 ) ) ) | 
						
							| 502 | 8 10 498 500 501 | syl22anc | ⊢ ( 𝜑  →  ( - 1 ↑ ( 2  ·  ( ( ♯ ‘ ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  ·  𝑁 ) ) )  =  ( ( - 1 ↑ 2 ) ↑ ( ( ♯ ‘ ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  ·  𝑁 ) ) ) | 
						
							| 503 |  | neg1sqe1 | ⊢ ( - 1 ↑ 2 )  =  1 | 
						
							| 504 | 503 | oveq1i | ⊢ ( ( - 1 ↑ 2 ) ↑ ( ( ♯ ‘ ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  ·  𝑁 ) )  =  ( 1 ↑ ( ( ♯ ‘ ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  ·  𝑁 ) ) | 
						
							| 505 |  | 1exp | ⊢ ( ( ( ♯ ‘ ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  ·  𝑁 )  ∈  ℤ  →  ( 1 ↑ ( ( ♯ ‘ ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  ·  𝑁 ) )  =  1 ) | 
						
							| 506 | 500 505 | syl | ⊢ ( 𝜑  →  ( 1 ↑ ( ( ♯ ‘ ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  ·  𝑁 ) )  =  1 ) | 
						
							| 507 | 504 506 | eqtrid | ⊢ ( 𝜑  →  ( ( - 1 ↑ 2 ) ↑ ( ( ♯ ‘ ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  ·  𝑁 ) )  =  1 ) | 
						
							| 508 | 497 502 507 | 3eqtrd | ⊢ ( 𝜑  →  ( - 1 ↑ ( Σ 𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) )  +  ( ♯ ‘ { 𝑧  ∈  𝑆  ∣  ¬  2  ∥  ( 1st  ‘ 𝑧 ) } ) ) )  =  1 ) | 
						
							| 509 | 44 55 508 | 3eqtr4d | ⊢ ( 𝜑  →  ( ( - 1 ↑ ( ♯ ‘ { 𝑧  ∈  𝑆  ∣  ¬  2  ∥  ( 1st  ‘ 𝑧 ) } ) )  ·  ( - 1 ↑ ( ♯ ‘ { 𝑧  ∈  𝑆  ∣  ¬  2  ∥  ( 1st  ‘ 𝑧 ) } ) ) )  =  ( - 1 ↑ ( Σ 𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) )  +  ( ♯ ‘ { 𝑧  ∈  𝑆  ∣  ¬  2  ∥  ( 1st  ‘ 𝑧 ) } ) ) ) ) | 
						
							| 510 |  | expaddz | ⊢ ( ( ( - 1  ∈  ℂ  ∧  - 1  ≠  0 )  ∧  ( Σ 𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) )  ∈  ℤ  ∧  ( ♯ ‘ { 𝑧  ∈  𝑆  ∣  ¬  2  ∥  ( 1st  ‘ 𝑧 ) } )  ∈  ℤ ) )  →  ( - 1 ↑ ( Σ 𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) )  +  ( ♯ ‘ { 𝑧  ∈  𝑆  ∣  ¬  2  ∥  ( 1st  ‘ 𝑧 ) } ) ) )  =  ( ( - 1 ↑ Σ 𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) )  ·  ( - 1 ↑ ( ♯ ‘ { 𝑧  ∈  𝑆  ∣  ¬  2  ∥  ( 1st  ‘ 𝑧 ) } ) ) ) ) | 
						
							| 511 | 8 10 25 42 510 | syl22anc | ⊢ ( 𝜑  →  ( - 1 ↑ ( Σ 𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) )  +  ( ♯ ‘ { 𝑧  ∈  𝑆  ∣  ¬  2  ∥  ( 1st  ‘ 𝑧 ) } ) ) )  =  ( ( - 1 ↑ Σ 𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) )  ·  ( - 1 ↑ ( ♯ ‘ { 𝑧  ∈  𝑆  ∣  ¬  2  ∥  ( 1st  ‘ 𝑧 ) } ) ) ) ) | 
						
							| 512 | 509 511 | eqtr2d | ⊢ ( 𝜑  →  ( ( - 1 ↑ Σ 𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) )  ·  ( - 1 ↑ ( ♯ ‘ { 𝑧  ∈  𝑆  ∣  ¬  2  ∥  ( 1st  ‘ 𝑧 ) } ) ) )  =  ( ( - 1 ↑ ( ♯ ‘ { 𝑧  ∈  𝑆  ∣  ¬  2  ∥  ( 1st  ‘ 𝑧 ) } ) )  ·  ( - 1 ↑ ( ♯ ‘ { 𝑧  ∈  𝑆  ∣  ¬  2  ∥  ( 1st  ‘ 𝑧 ) } ) ) ) ) | 
						
							| 513 | 26 41 41 43 512 | mulcan2ad | ⊢ ( 𝜑  →  ( - 1 ↑ Σ 𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) )  =  ( - 1 ↑ ( ♯ ‘ { 𝑧  ∈  𝑆  ∣  ¬  2  ∥  ( 1st  ‘ 𝑧 ) } ) ) ) |