Step |
Hyp |
Ref |
Expression |
1 |
|
lgseisen.1 |
⊢ ( 𝜑 → 𝑃 ∈ ( ℙ ∖ { 2 } ) ) |
2 |
|
lgseisen.2 |
⊢ ( 𝜑 → 𝑄 ∈ ( ℙ ∖ { 2 } ) ) |
3 |
|
lgseisen.3 |
⊢ ( 𝜑 → 𝑃 ≠ 𝑄 ) |
4 |
|
lgsquad.4 |
⊢ 𝑀 = ( ( 𝑃 − 1 ) / 2 ) |
5 |
|
lgsquad.5 |
⊢ 𝑁 = ( ( 𝑄 − 1 ) / 2 ) |
6 |
|
lgsquad.6 |
⊢ 𝑆 = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ ( 1 ... 𝑀 ) ∧ 𝑦 ∈ ( 1 ... 𝑁 ) ) ∧ ( 𝑦 · 𝑃 ) < ( 𝑥 · 𝑄 ) ) } |
7 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
8 |
7
|
a1i |
⊢ ( 𝜑 → - 1 ∈ ℂ ) |
9 |
|
neg1ne0 |
⊢ - 1 ≠ 0 |
10 |
9
|
a1i |
⊢ ( 𝜑 → - 1 ≠ 0 ) |
11 |
|
fzfid |
⊢ ( 𝜑 → ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ∈ Fin ) |
12 |
2
|
gausslemma2dlem0a |
⊢ ( 𝜑 → 𝑄 ∈ ℕ ) |
13 |
12
|
nnred |
⊢ ( 𝜑 → 𝑄 ∈ ℝ ) |
14 |
1
|
gausslemma2dlem0a |
⊢ ( 𝜑 → 𝑃 ∈ ℕ ) |
15 |
13 14
|
nndivred |
⊢ ( 𝜑 → ( 𝑄 / 𝑃 ) ∈ ℝ ) |
16 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → ( 𝑄 / 𝑃 ) ∈ ℝ ) |
17 |
|
2z |
⊢ 2 ∈ ℤ |
18 |
|
elfzelz |
⊢ ( 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) → 𝑢 ∈ ℤ ) |
19 |
18
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → 𝑢 ∈ ℤ ) |
20 |
|
zmulcl |
⊢ ( ( 2 ∈ ℤ ∧ 𝑢 ∈ ℤ ) → ( 2 · 𝑢 ) ∈ ℤ ) |
21 |
17 19 20
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → ( 2 · 𝑢 ) ∈ ℤ ) |
22 |
21
|
zred |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → ( 2 · 𝑢 ) ∈ ℝ ) |
23 |
16 22
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ∈ ℝ ) |
24 |
23
|
flcld |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ∈ ℤ ) |
25 |
11 24
|
fsumzcl |
⊢ ( 𝜑 → Σ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ∈ ℤ ) |
26 |
8 10 25
|
expclzd |
⊢ ( 𝜑 → ( - 1 ↑ Σ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ∈ ℂ ) |
27 |
|
fzfid |
⊢ ( 𝜑 → ( 1 ... 𝑀 ) ∈ Fin ) |
28 |
|
fzfid |
⊢ ( 𝜑 → ( 1 ... 𝑁 ) ∈ Fin ) |
29 |
|
xpfi |
⊢ ( ( ( 1 ... 𝑀 ) ∈ Fin ∧ ( 1 ... 𝑁 ) ∈ Fin ) → ( ( 1 ... 𝑀 ) × ( 1 ... 𝑁 ) ) ∈ Fin ) |
30 |
27 28 29
|
syl2anc |
⊢ ( 𝜑 → ( ( 1 ... 𝑀 ) × ( 1 ... 𝑁 ) ) ∈ Fin ) |
31 |
|
opabssxp |
⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ ( 1 ... 𝑀 ) ∧ 𝑦 ∈ ( 1 ... 𝑁 ) ) ∧ ( 𝑦 · 𝑃 ) < ( 𝑥 · 𝑄 ) ) } ⊆ ( ( 1 ... 𝑀 ) × ( 1 ... 𝑁 ) ) |
32 |
6 31
|
eqsstri |
⊢ 𝑆 ⊆ ( ( 1 ... 𝑀 ) × ( 1 ... 𝑁 ) ) |
33 |
|
ssfi |
⊢ ( ( ( ( 1 ... 𝑀 ) × ( 1 ... 𝑁 ) ) ∈ Fin ∧ 𝑆 ⊆ ( ( 1 ... 𝑀 ) × ( 1 ... 𝑁 ) ) ) → 𝑆 ∈ Fin ) |
34 |
30 32 33
|
sylancl |
⊢ ( 𝜑 → 𝑆 ∈ Fin ) |
35 |
|
ssrab2 |
⊢ { 𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ ( 1st ‘ 𝑧 ) } ⊆ 𝑆 |
36 |
|
ssfi |
⊢ ( ( 𝑆 ∈ Fin ∧ { 𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ ( 1st ‘ 𝑧 ) } ⊆ 𝑆 ) → { 𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ ( 1st ‘ 𝑧 ) } ∈ Fin ) |
37 |
34 35 36
|
sylancl |
⊢ ( 𝜑 → { 𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ ( 1st ‘ 𝑧 ) } ∈ Fin ) |
38 |
|
hashcl |
⊢ ( { 𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ ( 1st ‘ 𝑧 ) } ∈ Fin → ( ♯ ‘ { 𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ ( 1st ‘ 𝑧 ) } ) ∈ ℕ0 ) |
39 |
37 38
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ { 𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ ( 1st ‘ 𝑧 ) } ) ∈ ℕ0 ) |
40 |
|
expcl |
⊢ ( ( - 1 ∈ ℂ ∧ ( ♯ ‘ { 𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ ( 1st ‘ 𝑧 ) } ) ∈ ℕ0 ) → ( - 1 ↑ ( ♯ ‘ { 𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ ( 1st ‘ 𝑧 ) } ) ) ∈ ℂ ) |
41 |
7 39 40
|
sylancr |
⊢ ( 𝜑 → ( - 1 ↑ ( ♯ ‘ { 𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ ( 1st ‘ 𝑧 ) } ) ) ∈ ℂ ) |
42 |
39
|
nn0zd |
⊢ ( 𝜑 → ( ♯ ‘ { 𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ ( 1st ‘ 𝑧 ) } ) ∈ ℤ ) |
43 |
8 10 42
|
expne0d |
⊢ ( 𝜑 → ( - 1 ↑ ( ♯ ‘ { 𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ ( 1st ‘ 𝑧 ) } ) ) ≠ 0 ) |
44 |
41 43
|
recidd |
⊢ ( 𝜑 → ( ( - 1 ↑ ( ♯ ‘ { 𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ ( 1st ‘ 𝑧 ) } ) ) · ( 1 / ( - 1 ↑ ( ♯ ‘ { 𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ ( 1st ‘ 𝑧 ) } ) ) ) ) = 1 ) |
45 |
|
1div1e1 |
⊢ ( 1 / 1 ) = 1 |
46 |
45
|
negeqi |
⊢ - ( 1 / 1 ) = - 1 |
47 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
48 |
|
ax-1ne0 |
⊢ 1 ≠ 0 |
49 |
|
divneg2 |
⊢ ( ( 1 ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ≠ 0 ) → - ( 1 / 1 ) = ( 1 / - 1 ) ) |
50 |
47 47 48 49
|
mp3an |
⊢ - ( 1 / 1 ) = ( 1 / - 1 ) |
51 |
46 50
|
eqtr3i |
⊢ - 1 = ( 1 / - 1 ) |
52 |
51
|
oveq1i |
⊢ ( - 1 ↑ ( ♯ ‘ { 𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ ( 1st ‘ 𝑧 ) } ) ) = ( ( 1 / - 1 ) ↑ ( ♯ ‘ { 𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ ( 1st ‘ 𝑧 ) } ) ) |
53 |
8 10 42
|
exprecd |
⊢ ( 𝜑 → ( ( 1 / - 1 ) ↑ ( ♯ ‘ { 𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ ( 1st ‘ 𝑧 ) } ) ) = ( 1 / ( - 1 ↑ ( ♯ ‘ { 𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ ( 1st ‘ 𝑧 ) } ) ) ) ) |
54 |
52 53
|
syl5eq |
⊢ ( 𝜑 → ( - 1 ↑ ( ♯ ‘ { 𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ ( 1st ‘ 𝑧 ) } ) ) = ( 1 / ( - 1 ↑ ( ♯ ‘ { 𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ ( 1st ‘ 𝑧 ) } ) ) ) ) |
55 |
54
|
oveq2d |
⊢ ( 𝜑 → ( ( - 1 ↑ ( ♯ ‘ { 𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ ( 1st ‘ 𝑧 ) } ) ) · ( - 1 ↑ ( ♯ ‘ { 𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ ( 1st ‘ 𝑧 ) } ) ) ) = ( ( - 1 ↑ ( ♯ ‘ { 𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ ( 1st ‘ 𝑧 ) } ) ) · ( 1 / ( - 1 ↑ ( ♯ ‘ { 𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ ( 1st ‘ 𝑧 ) } ) ) ) ) ) |
56 |
34
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → 𝑆 ∈ Fin ) |
57 |
|
ssrab2 |
⊢ { 𝑧 ∈ 𝑆 ∣ ( 1st ‘ 𝑧 ) = ( 𝑃 − ( 2 · 𝑢 ) ) } ⊆ 𝑆 |
58 |
|
ssfi |
⊢ ( ( 𝑆 ∈ Fin ∧ { 𝑧 ∈ 𝑆 ∣ ( 1st ‘ 𝑧 ) = ( 𝑃 − ( 2 · 𝑢 ) ) } ⊆ 𝑆 ) → { 𝑧 ∈ 𝑆 ∣ ( 1st ‘ 𝑧 ) = ( 𝑃 − ( 2 · 𝑢 ) ) } ∈ Fin ) |
59 |
56 57 58
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → { 𝑧 ∈ 𝑆 ∣ ( 1st ‘ 𝑧 ) = ( 𝑃 − ( 2 · 𝑢 ) ) } ∈ Fin ) |
60 |
|
fveqeq2 |
⊢ ( 𝑧 = 𝑣 → ( ( 1st ‘ 𝑧 ) = ( 𝑃 − ( 2 · 𝑢 ) ) ↔ ( 1st ‘ 𝑣 ) = ( 𝑃 − ( 2 · 𝑢 ) ) ) ) |
61 |
60
|
elrab |
⊢ ( 𝑣 ∈ { 𝑧 ∈ 𝑆 ∣ ( 1st ‘ 𝑧 ) = ( 𝑃 − ( 2 · 𝑢 ) ) } ↔ ( 𝑣 ∈ 𝑆 ∧ ( 1st ‘ 𝑣 ) = ( 𝑃 − ( 2 · 𝑢 ) ) ) ) |
62 |
61
|
simprbi |
⊢ ( 𝑣 ∈ { 𝑧 ∈ 𝑆 ∣ ( 1st ‘ 𝑧 ) = ( 𝑃 − ( 2 · 𝑢 ) ) } → ( 1st ‘ 𝑣 ) = ( 𝑃 − ( 2 · 𝑢 ) ) ) |
63 |
62
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ∧ 𝑣 ∈ { 𝑧 ∈ 𝑆 ∣ ( 1st ‘ 𝑧 ) = ( 𝑃 − ( 2 · 𝑢 ) ) } ) ) → ( 1st ‘ 𝑣 ) = ( 𝑃 − ( 2 · 𝑢 ) ) ) |
64 |
63
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ∧ 𝑣 ∈ { 𝑧 ∈ 𝑆 ∣ ( 1st ‘ 𝑧 ) = ( 𝑃 − ( 2 · 𝑢 ) ) } ) ) → ( 𝑃 − ( 1st ‘ 𝑣 ) ) = ( 𝑃 − ( 𝑃 − ( 2 · 𝑢 ) ) ) ) |
65 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → 𝑃 ∈ ℕ ) |
66 |
65
|
nncnd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → 𝑃 ∈ ℂ ) |
67 |
66
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ∧ 𝑣 ∈ { 𝑧 ∈ 𝑆 ∣ ( 1st ‘ 𝑧 ) = ( 𝑃 − ( 2 · 𝑢 ) ) } ) ) → 𝑃 ∈ ℂ ) |
68 |
21
|
zcnd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → ( 2 · 𝑢 ) ∈ ℂ ) |
69 |
68
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ∧ 𝑣 ∈ { 𝑧 ∈ 𝑆 ∣ ( 1st ‘ 𝑧 ) = ( 𝑃 − ( 2 · 𝑢 ) ) } ) ) → ( 2 · 𝑢 ) ∈ ℂ ) |
70 |
67 69
|
nncand |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ∧ 𝑣 ∈ { 𝑧 ∈ 𝑆 ∣ ( 1st ‘ 𝑧 ) = ( 𝑃 − ( 2 · 𝑢 ) ) } ) ) → ( 𝑃 − ( 𝑃 − ( 2 · 𝑢 ) ) ) = ( 2 · 𝑢 ) ) |
71 |
64 70
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ∧ 𝑣 ∈ { 𝑧 ∈ 𝑆 ∣ ( 1st ‘ 𝑧 ) = ( 𝑃 − ( 2 · 𝑢 ) ) } ) ) → ( 𝑃 − ( 1st ‘ 𝑣 ) ) = ( 2 · 𝑢 ) ) |
72 |
71
|
oveq1d |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ∧ 𝑣 ∈ { 𝑧 ∈ 𝑆 ∣ ( 1st ‘ 𝑧 ) = ( 𝑃 − ( 2 · 𝑢 ) ) } ) ) → ( ( 𝑃 − ( 1st ‘ 𝑣 ) ) / 2 ) = ( ( 2 · 𝑢 ) / 2 ) ) |
73 |
19
|
zcnd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → 𝑢 ∈ ℂ ) |
74 |
73
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ∧ 𝑣 ∈ { 𝑧 ∈ 𝑆 ∣ ( 1st ‘ 𝑧 ) = ( 𝑃 − ( 2 · 𝑢 ) ) } ) ) → 𝑢 ∈ ℂ ) |
75 |
|
2cnd |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ∧ 𝑣 ∈ { 𝑧 ∈ 𝑆 ∣ ( 1st ‘ 𝑧 ) = ( 𝑃 − ( 2 · 𝑢 ) ) } ) ) → 2 ∈ ℂ ) |
76 |
|
2ne0 |
⊢ 2 ≠ 0 |
77 |
76
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ∧ 𝑣 ∈ { 𝑧 ∈ 𝑆 ∣ ( 1st ‘ 𝑧 ) = ( 𝑃 − ( 2 · 𝑢 ) ) } ) ) → 2 ≠ 0 ) |
78 |
74 75 77
|
divcan3d |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ∧ 𝑣 ∈ { 𝑧 ∈ 𝑆 ∣ ( 1st ‘ 𝑧 ) = ( 𝑃 − ( 2 · 𝑢 ) ) } ) ) → ( ( 2 · 𝑢 ) / 2 ) = 𝑢 ) |
79 |
72 78
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ∧ 𝑣 ∈ { 𝑧 ∈ 𝑆 ∣ ( 1st ‘ 𝑧 ) = ( 𝑃 − ( 2 · 𝑢 ) ) } ) ) → ( ( 𝑃 − ( 1st ‘ 𝑣 ) ) / 2 ) = 𝑢 ) |
80 |
79
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ∀ 𝑣 ∈ { 𝑧 ∈ 𝑆 ∣ ( 1st ‘ 𝑧 ) = ( 𝑃 − ( 2 · 𝑢 ) ) } ( ( 𝑃 − ( 1st ‘ 𝑣 ) ) / 2 ) = 𝑢 ) |
81 |
|
invdisj |
⊢ ( ∀ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ∀ 𝑣 ∈ { 𝑧 ∈ 𝑆 ∣ ( 1st ‘ 𝑧 ) = ( 𝑃 − ( 2 · 𝑢 ) ) } ( ( 𝑃 − ( 1st ‘ 𝑣 ) ) / 2 ) = 𝑢 → Disj 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) { 𝑧 ∈ 𝑆 ∣ ( 1st ‘ 𝑧 ) = ( 𝑃 − ( 2 · 𝑢 ) ) } ) |
82 |
80 81
|
syl |
⊢ ( 𝜑 → Disj 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) { 𝑧 ∈ 𝑆 ∣ ( 1st ‘ 𝑧 ) = ( 𝑃 − ( 2 · 𝑢 ) ) } ) |
83 |
11 59 82
|
hashiun |
⊢ ( 𝜑 → ( ♯ ‘ ∪ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) { 𝑧 ∈ 𝑆 ∣ ( 1st ‘ 𝑧 ) = ( 𝑃 − ( 2 · 𝑢 ) ) } ) = Σ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ( ♯ ‘ { 𝑧 ∈ 𝑆 ∣ ( 1st ‘ 𝑧 ) = ( 𝑃 − ( 2 · 𝑢 ) ) } ) ) |
84 |
|
iunrab |
⊢ ∪ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) { 𝑧 ∈ 𝑆 ∣ ( 1st ‘ 𝑧 ) = ( 𝑃 − ( 2 · 𝑢 ) ) } = { 𝑧 ∈ 𝑆 ∣ ∃ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ( 1st ‘ 𝑧 ) = ( 𝑃 − ( 2 · 𝑢 ) ) } |
85 |
|
eldifsni |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → 𝑃 ≠ 2 ) |
86 |
1 85
|
syl |
⊢ ( 𝜑 → 𝑃 ≠ 2 ) |
87 |
86
|
necomd |
⊢ ( 𝜑 → 2 ≠ 𝑃 ) |
88 |
87
|
neneqd |
⊢ ( 𝜑 → ¬ 2 = 𝑃 ) |
89 |
88
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → ¬ 2 = 𝑃 ) |
90 |
|
uzid |
⊢ ( 2 ∈ ℤ → 2 ∈ ( ℤ≥ ‘ 2 ) ) |
91 |
17 90
|
ax-mp |
⊢ 2 ∈ ( ℤ≥ ‘ 2 ) |
92 |
1
|
eldifad |
⊢ ( 𝜑 → 𝑃 ∈ ℙ ) |
93 |
92
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → 𝑃 ∈ ℙ ) |
94 |
|
dvdsprm |
⊢ ( ( 2 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑃 ∈ ℙ ) → ( 2 ∥ 𝑃 ↔ 2 = 𝑃 ) ) |
95 |
91 93 94
|
sylancr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → ( 2 ∥ 𝑃 ↔ 2 = 𝑃 ) ) |
96 |
89 95
|
mtbird |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → ¬ 2 ∥ 𝑃 ) |
97 |
14
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → 𝑃 ∈ ℕ ) |
98 |
97
|
nncnd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → 𝑃 ∈ ℂ ) |
99 |
21
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → ( 2 · 𝑢 ) ∈ ℤ ) |
100 |
99
|
zcnd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → ( 2 · 𝑢 ) ∈ ℂ ) |
101 |
98 100
|
npcand |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → ( ( 𝑃 − ( 2 · 𝑢 ) ) + ( 2 · 𝑢 ) ) = 𝑃 ) |
102 |
101
|
breq2d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → ( 2 ∥ ( ( 𝑃 − ( 2 · 𝑢 ) ) + ( 2 · 𝑢 ) ) ↔ 2 ∥ 𝑃 ) ) |
103 |
96 102
|
mtbird |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → ¬ 2 ∥ ( ( 𝑃 − ( 2 · 𝑢 ) ) + ( 2 · 𝑢 ) ) ) |
104 |
18
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → 𝑢 ∈ ℤ ) |
105 |
|
dvdsmul1 |
⊢ ( ( 2 ∈ ℤ ∧ 𝑢 ∈ ℤ ) → 2 ∥ ( 2 · 𝑢 ) ) |
106 |
17 104 105
|
sylancr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → 2 ∥ ( 2 · 𝑢 ) ) |
107 |
17
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → 2 ∈ ℤ ) |
108 |
97
|
nnzd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → 𝑃 ∈ ℤ ) |
109 |
108 99
|
zsubcld |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → ( 𝑃 − ( 2 · 𝑢 ) ) ∈ ℤ ) |
110 |
|
dvds2add |
⊢ ( ( 2 ∈ ℤ ∧ ( 𝑃 − ( 2 · 𝑢 ) ) ∈ ℤ ∧ ( 2 · 𝑢 ) ∈ ℤ ) → ( ( 2 ∥ ( 𝑃 − ( 2 · 𝑢 ) ) ∧ 2 ∥ ( 2 · 𝑢 ) ) → 2 ∥ ( ( 𝑃 − ( 2 · 𝑢 ) ) + ( 2 · 𝑢 ) ) ) ) |
111 |
107 109 99 110
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → ( ( 2 ∥ ( 𝑃 − ( 2 · 𝑢 ) ) ∧ 2 ∥ ( 2 · 𝑢 ) ) → 2 ∥ ( ( 𝑃 − ( 2 · 𝑢 ) ) + ( 2 · 𝑢 ) ) ) ) |
112 |
106 111
|
mpan2d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → ( 2 ∥ ( 𝑃 − ( 2 · 𝑢 ) ) → 2 ∥ ( ( 𝑃 − ( 2 · 𝑢 ) ) + ( 2 · 𝑢 ) ) ) ) |
113 |
103 112
|
mtod |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → ¬ 2 ∥ ( 𝑃 − ( 2 · 𝑢 ) ) ) |
114 |
|
breq2 |
⊢ ( ( 1st ‘ 𝑧 ) = ( 𝑃 − ( 2 · 𝑢 ) ) → ( 2 ∥ ( 1st ‘ 𝑧 ) ↔ 2 ∥ ( 𝑃 − ( 2 · 𝑢 ) ) ) ) |
115 |
114
|
notbid |
⊢ ( ( 1st ‘ 𝑧 ) = ( 𝑃 − ( 2 · 𝑢 ) ) → ( ¬ 2 ∥ ( 1st ‘ 𝑧 ) ↔ ¬ 2 ∥ ( 𝑃 − ( 2 · 𝑢 ) ) ) ) |
116 |
113 115
|
syl5ibrcom |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → ( ( 1st ‘ 𝑧 ) = ( 𝑃 − ( 2 · 𝑢 ) ) → ¬ 2 ∥ ( 1st ‘ 𝑧 ) ) ) |
117 |
116
|
rexlimdva |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) → ( ∃ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ( 1st ‘ 𝑧 ) = ( 𝑃 − ( 2 · 𝑢 ) ) → ¬ 2 ∥ ( 1st ‘ 𝑧 ) ) ) |
118 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) → 𝑧 ∈ 𝑆 ) |
119 |
32 118
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) → 𝑧 ∈ ( ( 1 ... 𝑀 ) × ( 1 ... 𝑁 ) ) ) |
120 |
|
xp1st |
⊢ ( 𝑧 ∈ ( ( 1 ... 𝑀 ) × ( 1 ... 𝑁 ) ) → ( 1st ‘ 𝑧 ) ∈ ( 1 ... 𝑀 ) ) |
121 |
119 120
|
syl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) → ( 1st ‘ 𝑧 ) ∈ ( 1 ... 𝑀 ) ) |
122 |
|
elfzelz |
⊢ ( ( 1st ‘ 𝑧 ) ∈ ( 1 ... 𝑀 ) → ( 1st ‘ 𝑧 ) ∈ ℤ ) |
123 |
|
odd2np1 |
⊢ ( ( 1st ‘ 𝑧 ) ∈ ℤ → ( ¬ 2 ∥ ( 1st ‘ 𝑧 ) ↔ ∃ 𝑛 ∈ ℤ ( ( 2 · 𝑛 ) + 1 ) = ( 1st ‘ 𝑧 ) ) ) |
124 |
121 122 123
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) → ( ¬ 2 ∥ ( 1st ‘ 𝑧 ) ↔ ∃ 𝑛 ∈ ℤ ( ( 2 · 𝑛 ) + 1 ) = ( 1st ‘ 𝑧 ) ) ) |
125 |
1 4
|
gausslemma2dlem0b |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
126 |
125
|
nnred |
⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
127 |
126
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = ( 1st ‘ 𝑧 ) ) ) → 𝑀 ∈ ℝ ) |
128 |
127
|
rehalfcld |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = ( 1st ‘ 𝑧 ) ) ) → ( 𝑀 / 2 ) ∈ ℝ ) |
129 |
128
|
flcld |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = ( 1st ‘ 𝑧 ) ) ) → ( ⌊ ‘ ( 𝑀 / 2 ) ) ∈ ℤ ) |
130 |
129
|
peano2zd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = ( 1st ‘ 𝑧 ) ) ) → ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ∈ ℤ ) |
131 |
125
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = ( 1st ‘ 𝑧 ) ) ) → 𝑀 ∈ ℕ ) |
132 |
131
|
nnzd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = ( 1st ‘ 𝑧 ) ) ) → 𝑀 ∈ ℤ ) |
133 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = ( 1st ‘ 𝑧 ) ) ) → 𝑛 ∈ ℤ ) |
134 |
132 133
|
zsubcld |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = ( 1st ‘ 𝑧 ) ) ) → ( 𝑀 − 𝑛 ) ∈ ℤ ) |
135 |
|
reflcl |
⊢ ( ( 𝑀 / 2 ) ∈ ℝ → ( ⌊ ‘ ( 𝑀 / 2 ) ) ∈ ℝ ) |
136 |
128 135
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = ( 1st ‘ 𝑧 ) ) ) → ( ⌊ ‘ ( 𝑀 / 2 ) ) ∈ ℝ ) |
137 |
134
|
zred |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = ( 1st ‘ 𝑧 ) ) ) → ( 𝑀 − 𝑛 ) ∈ ℝ ) |
138 |
|
flle |
⊢ ( ( 𝑀 / 2 ) ∈ ℝ → ( ⌊ ‘ ( 𝑀 / 2 ) ) ≤ ( 𝑀 / 2 ) ) |
139 |
128 138
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = ( 1st ‘ 𝑧 ) ) ) → ( ⌊ ‘ ( 𝑀 / 2 ) ) ≤ ( 𝑀 / 2 ) ) |
140 |
|
zre |
⊢ ( 𝑛 ∈ ℤ → 𝑛 ∈ ℝ ) |
141 |
140
|
ad2antrl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = ( 1st ‘ 𝑧 ) ) ) → 𝑛 ∈ ℝ ) |
142 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = ( 1st ‘ 𝑧 ) ) ) → ( ( 2 · 𝑛 ) + 1 ) = ( 1st ‘ 𝑧 ) ) |
143 |
121
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = ( 1st ‘ 𝑧 ) ) ) → ( 1st ‘ 𝑧 ) ∈ ( 1 ... 𝑀 ) ) |
144 |
142 143
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = ( 1st ‘ 𝑧 ) ) ) → ( ( 2 · 𝑛 ) + 1 ) ∈ ( 1 ... 𝑀 ) ) |
145 |
|
elfzle2 |
⊢ ( ( ( 2 · 𝑛 ) + 1 ) ∈ ( 1 ... 𝑀 ) → ( ( 2 · 𝑛 ) + 1 ) ≤ 𝑀 ) |
146 |
144 145
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = ( 1st ‘ 𝑧 ) ) ) → ( ( 2 · 𝑛 ) + 1 ) ≤ 𝑀 ) |
147 |
|
zmulcl |
⊢ ( ( 2 ∈ ℤ ∧ 𝑛 ∈ ℤ ) → ( 2 · 𝑛 ) ∈ ℤ ) |
148 |
17 133 147
|
sylancr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = ( 1st ‘ 𝑧 ) ) ) → ( 2 · 𝑛 ) ∈ ℤ ) |
149 |
|
zltp1le |
⊢ ( ( ( 2 · 𝑛 ) ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( ( 2 · 𝑛 ) < 𝑀 ↔ ( ( 2 · 𝑛 ) + 1 ) ≤ 𝑀 ) ) |
150 |
148 132 149
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = ( 1st ‘ 𝑧 ) ) ) → ( ( 2 · 𝑛 ) < 𝑀 ↔ ( ( 2 · 𝑛 ) + 1 ) ≤ 𝑀 ) ) |
151 |
146 150
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = ( 1st ‘ 𝑧 ) ) ) → ( 2 · 𝑛 ) < 𝑀 ) |
152 |
|
2re |
⊢ 2 ∈ ℝ |
153 |
152
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = ( 1st ‘ 𝑧 ) ) ) → 2 ∈ ℝ ) |
154 |
|
2pos |
⊢ 0 < 2 |
155 |
154
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = ( 1st ‘ 𝑧 ) ) ) → 0 < 2 ) |
156 |
|
ltmuldiv2 |
⊢ ( ( 𝑛 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ ( 2 ∈ ℝ ∧ 0 < 2 ) ) → ( ( 2 · 𝑛 ) < 𝑀 ↔ 𝑛 < ( 𝑀 / 2 ) ) ) |
157 |
141 127 153 155 156
|
syl112anc |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = ( 1st ‘ 𝑧 ) ) ) → ( ( 2 · 𝑛 ) < 𝑀 ↔ 𝑛 < ( 𝑀 / 2 ) ) ) |
158 |
151 157
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = ( 1st ‘ 𝑧 ) ) ) → 𝑛 < ( 𝑀 / 2 ) ) |
159 |
128
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = ( 1st ‘ 𝑧 ) ) ) → ( 𝑀 / 2 ) ∈ ℂ ) |
160 |
125
|
nncnd |
⊢ ( 𝜑 → 𝑀 ∈ ℂ ) |
161 |
160
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = ( 1st ‘ 𝑧 ) ) ) → 𝑀 ∈ ℂ ) |
162 |
161
|
2halvesd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = ( 1st ‘ 𝑧 ) ) ) → ( ( 𝑀 / 2 ) + ( 𝑀 / 2 ) ) = 𝑀 ) |
163 |
159 159 162
|
mvlraddd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = ( 1st ‘ 𝑧 ) ) ) → ( 𝑀 / 2 ) = ( 𝑀 − ( 𝑀 / 2 ) ) ) |
164 |
158 163
|
breqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = ( 1st ‘ 𝑧 ) ) ) → 𝑛 < ( 𝑀 − ( 𝑀 / 2 ) ) ) |
165 |
141 127 128 164
|
ltsub13d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = ( 1st ‘ 𝑧 ) ) ) → ( 𝑀 / 2 ) < ( 𝑀 − 𝑛 ) ) |
166 |
136 128 137 139 165
|
lelttrd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = ( 1st ‘ 𝑧 ) ) ) → ( ⌊ ‘ ( 𝑀 / 2 ) ) < ( 𝑀 − 𝑛 ) ) |
167 |
|
zltp1le |
⊢ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) ∈ ℤ ∧ ( 𝑀 − 𝑛 ) ∈ ℤ ) → ( ( ⌊ ‘ ( 𝑀 / 2 ) ) < ( 𝑀 − 𝑛 ) ↔ ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ≤ ( 𝑀 − 𝑛 ) ) ) |
168 |
129 134 167
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = ( 1st ‘ 𝑧 ) ) ) → ( ( ⌊ ‘ ( 𝑀 / 2 ) ) < ( 𝑀 − 𝑛 ) ↔ ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ≤ ( 𝑀 − 𝑛 ) ) ) |
169 |
166 168
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = ( 1st ‘ 𝑧 ) ) ) → ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ≤ ( 𝑀 − 𝑛 ) ) |
170 |
|
2t0e0 |
⊢ ( 2 · 0 ) = 0 |
171 |
|
2cn |
⊢ 2 ∈ ℂ |
172 |
|
zcn |
⊢ ( 𝑛 ∈ ℤ → 𝑛 ∈ ℂ ) |
173 |
172
|
ad2antrl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = ( 1st ‘ 𝑧 ) ) ) → 𝑛 ∈ ℂ ) |
174 |
|
mulcl |
⊢ ( ( 2 ∈ ℂ ∧ 𝑛 ∈ ℂ ) → ( 2 · 𝑛 ) ∈ ℂ ) |
175 |
171 173 174
|
sylancr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = ( 1st ‘ 𝑧 ) ) ) → ( 2 · 𝑛 ) ∈ ℂ ) |
176 |
|
pncan |
⊢ ( ( ( 2 · 𝑛 ) ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( ( 2 · 𝑛 ) + 1 ) − 1 ) = ( 2 · 𝑛 ) ) |
177 |
175 47 176
|
sylancl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = ( 1st ‘ 𝑧 ) ) ) → ( ( ( 2 · 𝑛 ) + 1 ) − 1 ) = ( 2 · 𝑛 ) ) |
178 |
|
elfznn |
⊢ ( ( ( 2 · 𝑛 ) + 1 ) ∈ ( 1 ... 𝑀 ) → ( ( 2 · 𝑛 ) + 1 ) ∈ ℕ ) |
179 |
|
nnm1nn0 |
⊢ ( ( ( 2 · 𝑛 ) + 1 ) ∈ ℕ → ( ( ( 2 · 𝑛 ) + 1 ) − 1 ) ∈ ℕ0 ) |
180 |
144 178 179
|
3syl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = ( 1st ‘ 𝑧 ) ) ) → ( ( ( 2 · 𝑛 ) + 1 ) − 1 ) ∈ ℕ0 ) |
181 |
177 180
|
eqeltrrd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = ( 1st ‘ 𝑧 ) ) ) → ( 2 · 𝑛 ) ∈ ℕ0 ) |
182 |
181
|
nn0ge0d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = ( 1st ‘ 𝑧 ) ) ) → 0 ≤ ( 2 · 𝑛 ) ) |
183 |
170 182
|
eqbrtrid |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = ( 1st ‘ 𝑧 ) ) ) → ( 2 · 0 ) ≤ ( 2 · 𝑛 ) ) |
184 |
|
0red |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = ( 1st ‘ 𝑧 ) ) ) → 0 ∈ ℝ ) |
185 |
|
lemul2 |
⊢ ( ( 0 ∈ ℝ ∧ 𝑛 ∈ ℝ ∧ ( 2 ∈ ℝ ∧ 0 < 2 ) ) → ( 0 ≤ 𝑛 ↔ ( 2 · 0 ) ≤ ( 2 · 𝑛 ) ) ) |
186 |
184 141 153 155 185
|
syl112anc |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = ( 1st ‘ 𝑧 ) ) ) → ( 0 ≤ 𝑛 ↔ ( 2 · 0 ) ≤ ( 2 · 𝑛 ) ) ) |
187 |
183 186
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = ( 1st ‘ 𝑧 ) ) ) → 0 ≤ 𝑛 ) |
188 |
127 141
|
subge02d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = ( 1st ‘ 𝑧 ) ) ) → ( 0 ≤ 𝑛 ↔ ( 𝑀 − 𝑛 ) ≤ 𝑀 ) ) |
189 |
187 188
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = ( 1st ‘ 𝑧 ) ) ) → ( 𝑀 − 𝑛 ) ≤ 𝑀 ) |
190 |
130 132 134 169 189
|
elfzd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = ( 1st ‘ 𝑧 ) ) ) → ( 𝑀 − 𝑛 ) ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) |
191 |
92
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = ( 1st ‘ 𝑧 ) ) ) → 𝑃 ∈ ℙ ) |
192 |
|
prmnn |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ ) |
193 |
191 192
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = ( 1st ‘ 𝑧 ) ) ) → 𝑃 ∈ ℕ ) |
194 |
193
|
nncnd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = ( 1st ‘ 𝑧 ) ) ) → 𝑃 ∈ ℂ ) |
195 |
|
peano2cn |
⊢ ( ( 2 · 𝑛 ) ∈ ℂ → ( ( 2 · 𝑛 ) + 1 ) ∈ ℂ ) |
196 |
175 195
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = ( 1st ‘ 𝑧 ) ) ) → ( ( 2 · 𝑛 ) + 1 ) ∈ ℂ ) |
197 |
194 196
|
nncand |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = ( 1st ‘ 𝑧 ) ) ) → ( 𝑃 − ( 𝑃 − ( ( 2 · 𝑛 ) + 1 ) ) ) = ( ( 2 · 𝑛 ) + 1 ) ) |
198 |
|
1cnd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = ( 1st ‘ 𝑧 ) ) ) → 1 ∈ ℂ ) |
199 |
194 175 198
|
sub32d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = ( 1st ‘ 𝑧 ) ) ) → ( ( 𝑃 − ( 2 · 𝑛 ) ) − 1 ) = ( ( 𝑃 − 1 ) − ( 2 · 𝑛 ) ) ) |
200 |
194 175 198
|
subsub4d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = ( 1st ‘ 𝑧 ) ) ) → ( ( 𝑃 − ( 2 · 𝑛 ) ) − 1 ) = ( 𝑃 − ( ( 2 · 𝑛 ) + 1 ) ) ) |
201 |
|
2cnd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = ( 1st ‘ 𝑧 ) ) ) → 2 ∈ ℂ ) |
202 |
201 161 173
|
subdid |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = ( 1st ‘ 𝑧 ) ) ) → ( 2 · ( 𝑀 − 𝑛 ) ) = ( ( 2 · 𝑀 ) − ( 2 · 𝑛 ) ) ) |
203 |
4
|
oveq2i |
⊢ ( 2 · 𝑀 ) = ( 2 · ( ( 𝑃 − 1 ) / 2 ) ) |
204 |
14
|
nnzd |
⊢ ( 𝜑 → 𝑃 ∈ ℤ ) |
205 |
204
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = ( 1st ‘ 𝑧 ) ) ) → 𝑃 ∈ ℤ ) |
206 |
|
peano2zm |
⊢ ( 𝑃 ∈ ℤ → ( 𝑃 − 1 ) ∈ ℤ ) |
207 |
205 206
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = ( 1st ‘ 𝑧 ) ) ) → ( 𝑃 − 1 ) ∈ ℤ ) |
208 |
207
|
zcnd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = ( 1st ‘ 𝑧 ) ) ) → ( 𝑃 − 1 ) ∈ ℂ ) |
209 |
76
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = ( 1st ‘ 𝑧 ) ) ) → 2 ≠ 0 ) |
210 |
208 201 209
|
divcan2d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = ( 1st ‘ 𝑧 ) ) ) → ( 2 · ( ( 𝑃 − 1 ) / 2 ) ) = ( 𝑃 − 1 ) ) |
211 |
203 210
|
syl5eq |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = ( 1st ‘ 𝑧 ) ) ) → ( 2 · 𝑀 ) = ( 𝑃 − 1 ) ) |
212 |
211
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = ( 1st ‘ 𝑧 ) ) ) → ( ( 2 · 𝑀 ) − ( 2 · 𝑛 ) ) = ( ( 𝑃 − 1 ) − ( 2 · 𝑛 ) ) ) |
213 |
202 212
|
eqtr2d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = ( 1st ‘ 𝑧 ) ) ) → ( ( 𝑃 − 1 ) − ( 2 · 𝑛 ) ) = ( 2 · ( 𝑀 − 𝑛 ) ) ) |
214 |
199 200 213
|
3eqtr3d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = ( 1st ‘ 𝑧 ) ) ) → ( 𝑃 − ( ( 2 · 𝑛 ) + 1 ) ) = ( 2 · ( 𝑀 − 𝑛 ) ) ) |
215 |
214
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = ( 1st ‘ 𝑧 ) ) ) → ( 𝑃 − ( 𝑃 − ( ( 2 · 𝑛 ) + 1 ) ) ) = ( 𝑃 − ( 2 · ( 𝑀 − 𝑛 ) ) ) ) |
216 |
197 215 142
|
3eqtr3rd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = ( 1st ‘ 𝑧 ) ) ) → ( 1st ‘ 𝑧 ) = ( 𝑃 − ( 2 · ( 𝑀 − 𝑛 ) ) ) ) |
217 |
|
oveq2 |
⊢ ( 𝑢 = ( 𝑀 − 𝑛 ) → ( 2 · 𝑢 ) = ( 2 · ( 𝑀 − 𝑛 ) ) ) |
218 |
217
|
oveq2d |
⊢ ( 𝑢 = ( 𝑀 − 𝑛 ) → ( 𝑃 − ( 2 · 𝑢 ) ) = ( 𝑃 − ( 2 · ( 𝑀 − 𝑛 ) ) ) ) |
219 |
218
|
rspceeqv |
⊢ ( ( ( 𝑀 − 𝑛 ) ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ∧ ( 1st ‘ 𝑧 ) = ( 𝑃 − ( 2 · ( 𝑀 − 𝑛 ) ) ) ) → ∃ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ( 1st ‘ 𝑧 ) = ( 𝑃 − ( 2 · 𝑢 ) ) ) |
220 |
190 216 219
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = ( 1st ‘ 𝑧 ) ) ) → ∃ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ( 1st ‘ 𝑧 ) = ( 𝑃 − ( 2 · 𝑢 ) ) ) |
221 |
220
|
rexlimdvaa |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) → ( ∃ 𝑛 ∈ ℤ ( ( 2 · 𝑛 ) + 1 ) = ( 1st ‘ 𝑧 ) → ∃ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ( 1st ‘ 𝑧 ) = ( 𝑃 − ( 2 · 𝑢 ) ) ) ) |
222 |
124 221
|
sylbid |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) → ( ¬ 2 ∥ ( 1st ‘ 𝑧 ) → ∃ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ( 1st ‘ 𝑧 ) = ( 𝑃 − ( 2 · 𝑢 ) ) ) ) |
223 |
117 222
|
impbid |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) → ( ∃ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ( 1st ‘ 𝑧 ) = ( 𝑃 − ( 2 · 𝑢 ) ) ↔ ¬ 2 ∥ ( 1st ‘ 𝑧 ) ) ) |
224 |
223
|
rabbidva |
⊢ ( 𝜑 → { 𝑧 ∈ 𝑆 ∣ ∃ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ( 1st ‘ 𝑧 ) = ( 𝑃 − ( 2 · 𝑢 ) ) } = { 𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ ( 1st ‘ 𝑧 ) } ) |
225 |
84 224
|
syl5eq |
⊢ ( 𝜑 → ∪ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) { 𝑧 ∈ 𝑆 ∣ ( 1st ‘ 𝑧 ) = ( 𝑃 − ( 2 · 𝑢 ) ) } = { 𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ ( 1st ‘ 𝑧 ) } ) |
226 |
225
|
fveq2d |
⊢ ( 𝜑 → ( ♯ ‘ ∪ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) { 𝑧 ∈ 𝑆 ∣ ( 1st ‘ 𝑧 ) = ( 𝑃 − ( 2 · 𝑢 ) ) } ) = ( ♯ ‘ { 𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ ( 1st ‘ 𝑧 ) } ) ) |
227 |
6
|
relopabiv |
⊢ Rel 𝑆 |
228 |
|
relss |
⊢ ( { 𝑧 ∈ 𝑆 ∣ ( 1st ‘ 𝑧 ) = ( 𝑃 − ( 2 · 𝑢 ) ) } ⊆ 𝑆 → ( Rel 𝑆 → Rel { 𝑧 ∈ 𝑆 ∣ ( 1st ‘ 𝑧 ) = ( 𝑃 − ( 2 · 𝑢 ) ) } ) ) |
229 |
57 227 228
|
mp2 |
⊢ Rel { 𝑧 ∈ 𝑆 ∣ ( 1st ‘ 𝑧 ) = ( 𝑃 − ( 2 · 𝑢 ) ) } |
230 |
|
relxp |
⊢ Rel ( { ( 𝑃 − ( 2 · 𝑢 ) ) } × ( 1 ... ( ( 2 · 𝑁 ) − ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) ) |
231 |
6
|
eleq2i |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ 𝑆 ↔ 〈 𝑥 , 𝑦 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ ( 1 ... 𝑀 ) ∧ 𝑦 ∈ ( 1 ... 𝑁 ) ) ∧ ( 𝑦 · 𝑃 ) < ( 𝑥 · 𝑄 ) ) } ) |
232 |
|
opabidw |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ ( 1 ... 𝑀 ) ∧ 𝑦 ∈ ( 1 ... 𝑁 ) ) ∧ ( 𝑦 · 𝑃 ) < ( 𝑥 · 𝑄 ) ) } ↔ ( ( 𝑥 ∈ ( 1 ... 𝑀 ) ∧ 𝑦 ∈ ( 1 ... 𝑁 ) ) ∧ ( 𝑦 · 𝑃 ) < ( 𝑥 · 𝑄 ) ) ) |
233 |
231 232
|
bitri |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ 𝑆 ↔ ( ( 𝑥 ∈ ( 1 ... 𝑀 ) ∧ 𝑦 ∈ ( 1 ... 𝑁 ) ) ∧ ( 𝑦 · 𝑃 ) < ( 𝑥 · 𝑄 ) ) ) |
234 |
|
anass |
⊢ ( ( ( 𝑦 ∈ ℕ ∧ 𝑦 ≤ 𝑁 ) ∧ ( 𝑦 · 𝑃 ) < ( ( 𝑃 − ( 2 · 𝑢 ) ) · 𝑄 ) ) ↔ ( 𝑦 ∈ ℕ ∧ ( 𝑦 ≤ 𝑁 ∧ ( 𝑦 · 𝑃 ) < ( ( 𝑃 − ( 2 · 𝑢 ) ) · 𝑄 ) ) ) ) |
235 |
24
|
peano2zd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → ( ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) + 1 ) ∈ ℤ ) |
236 |
235
|
zred |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → ( ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) + 1 ) ∈ ℝ ) |
237 |
236
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) ∧ 𝑦 ∈ ℕ ) → ( ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) + 1 ) ∈ ℝ ) |
238 |
13
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) ∧ 𝑦 ∈ ℕ ) → 𝑄 ∈ ℝ ) |
239 |
|
nnre |
⊢ ( 𝑦 ∈ ℕ → 𝑦 ∈ ℝ ) |
240 |
239
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) ∧ 𝑦 ∈ ℕ ) → 𝑦 ∈ ℝ ) |
241 |
|
lesub |
⊢ ( ( ( ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) + 1 ) ∈ ℝ ∧ 𝑄 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) + 1 ) ≤ ( 𝑄 − 𝑦 ) ↔ 𝑦 ≤ ( 𝑄 − ( ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) + 1 ) ) ) ) |
242 |
237 238 240 241
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) ∧ 𝑦 ∈ ℕ ) → ( ( ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) + 1 ) ≤ ( 𝑄 − 𝑦 ) ↔ 𝑦 ≤ ( 𝑄 − ( ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) + 1 ) ) ) ) |
243 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → 𝑄 ∈ ℝ ) |
244 |
243
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → 𝑄 ∈ ℂ ) |
245 |
66 244
|
mulcomd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → ( 𝑃 · 𝑄 ) = ( 𝑄 · 𝑃 ) ) |
246 |
68 244
|
mulcomd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → ( ( 2 · 𝑢 ) · 𝑄 ) = ( 𝑄 · ( 2 · 𝑢 ) ) ) |
247 |
65
|
nnne0d |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → 𝑃 ≠ 0 ) |
248 |
244 66 247
|
divcan1d |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → ( ( 𝑄 / 𝑃 ) · 𝑃 ) = 𝑄 ) |
249 |
248
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → ( ( ( 𝑄 / 𝑃 ) · 𝑃 ) · ( 2 · 𝑢 ) ) = ( 𝑄 · ( 2 · 𝑢 ) ) ) |
250 |
16
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → ( 𝑄 / 𝑃 ) ∈ ℂ ) |
251 |
250 66 68
|
mul32d |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → ( ( ( 𝑄 / 𝑃 ) · 𝑃 ) · ( 2 · 𝑢 ) ) = ( ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) · 𝑃 ) ) |
252 |
246 249 251
|
3eqtr2d |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → ( ( 2 · 𝑢 ) · 𝑄 ) = ( ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) · 𝑃 ) ) |
253 |
245 252
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → ( ( 𝑃 · 𝑄 ) − ( ( 2 · 𝑢 ) · 𝑄 ) ) = ( ( 𝑄 · 𝑃 ) − ( ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) · 𝑃 ) ) ) |
254 |
66 68 244
|
subdird |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → ( ( 𝑃 − ( 2 · 𝑢 ) ) · 𝑄 ) = ( ( 𝑃 · 𝑄 ) − ( ( 2 · 𝑢 ) · 𝑄 ) ) ) |
255 |
23
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ∈ ℂ ) |
256 |
244 255 66
|
subdird |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → ( ( 𝑄 − ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) · 𝑃 ) = ( ( 𝑄 · 𝑃 ) − ( ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) · 𝑃 ) ) ) |
257 |
253 254 256
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → ( ( 𝑃 − ( 2 · 𝑢 ) ) · 𝑄 ) = ( ( 𝑄 − ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) · 𝑃 ) ) |
258 |
257
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) ∧ 𝑦 ∈ ℕ ) → ( ( 𝑃 − ( 2 · 𝑢 ) ) · 𝑄 ) = ( ( 𝑄 − ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) · 𝑃 ) ) |
259 |
258
|
breq2d |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) ∧ 𝑦 ∈ ℕ ) → ( ( 𝑦 · 𝑃 ) < ( ( 𝑃 − ( 2 · 𝑢 ) ) · 𝑄 ) ↔ ( 𝑦 · 𝑃 ) < ( ( 𝑄 − ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) · 𝑃 ) ) ) |
260 |
23
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) ∧ 𝑦 ∈ ℕ ) → ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ∈ ℝ ) |
261 |
238 260
|
resubcld |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) ∧ 𝑦 ∈ ℕ ) → ( 𝑄 − ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ∈ ℝ ) |
262 |
65
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) ∧ 𝑦 ∈ ℕ ) → 𝑃 ∈ ℕ ) |
263 |
262
|
nnred |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) ∧ 𝑦 ∈ ℕ ) → 𝑃 ∈ ℝ ) |
264 |
262
|
nngt0d |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) ∧ 𝑦 ∈ ℕ ) → 0 < 𝑃 ) |
265 |
|
ltmul1 |
⊢ ( ( 𝑦 ∈ ℝ ∧ ( 𝑄 − ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ∈ ℝ ∧ ( 𝑃 ∈ ℝ ∧ 0 < 𝑃 ) ) → ( 𝑦 < ( 𝑄 − ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ↔ ( 𝑦 · 𝑃 ) < ( ( 𝑄 − ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) · 𝑃 ) ) ) |
266 |
240 261 263 264 265
|
syl112anc |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) ∧ 𝑦 ∈ ℕ ) → ( 𝑦 < ( 𝑄 − ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ↔ ( 𝑦 · 𝑃 ) < ( ( 𝑄 − ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) · 𝑃 ) ) ) |
267 |
|
ltsub13 |
⊢ ( ( 𝑦 ∈ ℝ ∧ 𝑄 ∈ ℝ ∧ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ∈ ℝ ) → ( 𝑦 < ( 𝑄 − ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ↔ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) < ( 𝑄 − 𝑦 ) ) ) |
268 |
240 238 260 267
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) ∧ 𝑦 ∈ ℕ ) → ( 𝑦 < ( 𝑄 − ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ↔ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) < ( 𝑄 − 𝑦 ) ) ) |
269 |
259 266 268
|
3bitr2d |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) ∧ 𝑦 ∈ ℕ ) → ( ( 𝑦 · 𝑃 ) < ( ( 𝑃 − ( 2 · 𝑢 ) ) · 𝑄 ) ↔ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) < ( 𝑄 − 𝑦 ) ) ) |
270 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → 𝑄 ∈ ℕ ) |
271 |
270
|
nnzd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → 𝑄 ∈ ℤ ) |
272 |
|
nnz |
⊢ ( 𝑦 ∈ ℕ → 𝑦 ∈ ℤ ) |
273 |
|
zsubcl |
⊢ ( ( 𝑄 ∈ ℤ ∧ 𝑦 ∈ ℤ ) → ( 𝑄 − 𝑦 ) ∈ ℤ ) |
274 |
271 272 273
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) ∧ 𝑦 ∈ ℕ ) → ( 𝑄 − 𝑦 ) ∈ ℤ ) |
275 |
|
fllt |
⊢ ( ( ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ∈ ℝ ∧ ( 𝑄 − 𝑦 ) ∈ ℤ ) → ( ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) < ( 𝑄 − 𝑦 ) ↔ ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) < ( 𝑄 − 𝑦 ) ) ) |
276 |
260 274 275
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) ∧ 𝑦 ∈ ℕ ) → ( ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) < ( 𝑄 − 𝑦 ) ↔ ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) < ( 𝑄 − 𝑦 ) ) ) |
277 |
24
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) ∧ 𝑦 ∈ ℕ ) → ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ∈ ℤ ) |
278 |
|
zltp1le |
⊢ ( ( ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ∈ ℤ ∧ ( 𝑄 − 𝑦 ) ∈ ℤ ) → ( ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) < ( 𝑄 − 𝑦 ) ↔ ( ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) + 1 ) ≤ ( 𝑄 − 𝑦 ) ) ) |
279 |
277 274 278
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) ∧ 𝑦 ∈ ℕ ) → ( ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) < ( 𝑄 − 𝑦 ) ↔ ( ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) + 1 ) ≤ ( 𝑄 − 𝑦 ) ) ) |
280 |
269 276 279
|
3bitrd |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) ∧ 𝑦 ∈ ℕ ) → ( ( 𝑦 · 𝑃 ) < ( ( 𝑃 − ( 2 · 𝑢 ) ) · 𝑄 ) ↔ ( ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) + 1 ) ≤ ( 𝑄 − 𝑦 ) ) ) |
281 |
5
|
oveq2i |
⊢ ( 2 · 𝑁 ) = ( 2 · ( ( 𝑄 − 1 ) / 2 ) ) |
282 |
|
peano2rem |
⊢ ( 𝑄 ∈ ℝ → ( 𝑄 − 1 ) ∈ ℝ ) |
283 |
243 282
|
syl |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → ( 𝑄 − 1 ) ∈ ℝ ) |
284 |
283
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → ( 𝑄 − 1 ) ∈ ℂ ) |
285 |
|
2cnd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → 2 ∈ ℂ ) |
286 |
76
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → 2 ≠ 0 ) |
287 |
284 285 286
|
divcan2d |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → ( 2 · ( ( 𝑄 − 1 ) / 2 ) ) = ( 𝑄 − 1 ) ) |
288 |
281 287
|
syl5eq |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → ( 2 · 𝑁 ) = ( 𝑄 − 1 ) ) |
289 |
288
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → ( ( 2 · 𝑁 ) − ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) = ( ( 𝑄 − 1 ) − ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) |
290 |
|
1cnd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → 1 ∈ ℂ ) |
291 |
24
|
zcnd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ∈ ℂ ) |
292 |
244 290 291
|
sub32d |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → ( ( 𝑄 − 1 ) − ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) = ( ( 𝑄 − ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) − 1 ) ) |
293 |
244 291 290
|
subsub4d |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → ( ( 𝑄 − ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) − 1 ) = ( 𝑄 − ( ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) + 1 ) ) ) |
294 |
289 292 293
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → ( ( 2 · 𝑁 ) − ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) = ( 𝑄 − ( ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) + 1 ) ) ) |
295 |
294
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) ∧ 𝑦 ∈ ℕ ) → ( ( 2 · 𝑁 ) − ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) = ( 𝑄 − ( ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) + 1 ) ) ) |
296 |
295
|
breq2d |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) ∧ 𝑦 ∈ ℕ ) → ( 𝑦 ≤ ( ( 2 · 𝑁 ) − ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ↔ 𝑦 ≤ ( 𝑄 − ( ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) + 1 ) ) ) ) |
297 |
242 280 296
|
3bitr4d |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) ∧ 𝑦 ∈ ℕ ) → ( ( 𝑦 · 𝑃 ) < ( ( 𝑃 − ( 2 · 𝑢 ) ) · 𝑄 ) ↔ 𝑦 ≤ ( ( 2 · 𝑁 ) − ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) ) |
298 |
297
|
anbi2d |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) ∧ 𝑦 ∈ ℕ ) → ( ( 𝑦 ≤ 𝑁 ∧ ( 𝑦 · 𝑃 ) < ( ( 𝑃 − ( 2 · 𝑢 ) ) · 𝑄 ) ) ↔ ( 𝑦 ≤ 𝑁 ∧ 𝑦 ≤ ( ( 2 · 𝑁 ) − ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) ) ) |
299 |
|
2nn |
⊢ 2 ∈ ℕ |
300 |
2 5
|
gausslemma2dlem0b |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
301 |
|
nnmulcl |
⊢ ( ( 2 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 2 · 𝑁 ) ∈ ℕ ) |
302 |
299 300 301
|
sylancr |
⊢ ( 𝜑 → ( 2 · 𝑁 ) ∈ ℕ ) |
303 |
302
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → ( 2 · 𝑁 ) ∈ ℕ ) |
304 |
303
|
nnred |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → ( 2 · 𝑁 ) ∈ ℝ ) |
305 |
300
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → 𝑁 ∈ ℕ ) |
306 |
305
|
nnred |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → 𝑁 ∈ ℝ ) |
307 |
24
|
zred |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ∈ ℝ ) |
308 |
300
|
nncnd |
⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
309 |
308
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → 𝑁 ∈ ℂ ) |
310 |
309
|
2timesd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → ( 2 · 𝑁 ) = ( 𝑁 + 𝑁 ) ) |
311 |
309 309 310
|
mvrladdd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → ( ( 2 · 𝑁 ) − 𝑁 ) = 𝑁 ) |
312 |
243
|
rehalfcld |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → ( 𝑄 / 2 ) ∈ ℝ ) |
313 |
243
|
ltm1d |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → ( 𝑄 − 1 ) < 𝑄 ) |
314 |
152
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → 2 ∈ ℝ ) |
315 |
154
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → 0 < 2 ) |
316 |
|
ltdiv1 |
⊢ ( ( ( 𝑄 − 1 ) ∈ ℝ ∧ 𝑄 ∈ ℝ ∧ ( 2 ∈ ℝ ∧ 0 < 2 ) ) → ( ( 𝑄 − 1 ) < 𝑄 ↔ ( ( 𝑄 − 1 ) / 2 ) < ( 𝑄 / 2 ) ) ) |
317 |
283 243 314 315 316
|
syl112anc |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → ( ( 𝑄 − 1 ) < 𝑄 ↔ ( ( 𝑄 − 1 ) / 2 ) < ( 𝑄 / 2 ) ) ) |
318 |
313 317
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → ( ( 𝑄 − 1 ) / 2 ) < ( 𝑄 / 2 ) ) |
319 |
5 318
|
eqbrtrid |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → 𝑁 < ( 𝑄 / 2 ) ) |
320 |
306 312 319
|
ltled |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → 𝑁 ≤ ( 𝑄 / 2 ) ) |
321 |
244 285 66 286
|
div32d |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → ( ( 𝑄 / 2 ) · 𝑃 ) = ( 𝑄 · ( 𝑃 / 2 ) ) ) |
322 |
126
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → 𝑀 ∈ ℝ ) |
323 |
322
|
rehalfcld |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → ( 𝑀 / 2 ) ∈ ℝ ) |
324 |
|
peano2re |
⊢ ( ( ⌊ ‘ ( 𝑀 / 2 ) ) ∈ ℝ → ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ∈ ℝ ) |
325 |
323 135 324
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ∈ ℝ ) |
326 |
19
|
zred |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → 𝑢 ∈ ℝ ) |
327 |
|
flltp1 |
⊢ ( ( 𝑀 / 2 ) ∈ ℝ → ( 𝑀 / 2 ) < ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ) |
328 |
323 327
|
syl |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → ( 𝑀 / 2 ) < ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ) |
329 |
|
elfzle1 |
⊢ ( 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) → ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ≤ 𝑢 ) |
330 |
329
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ≤ 𝑢 ) |
331 |
323 325 326 328 330
|
ltletrd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → ( 𝑀 / 2 ) < 𝑢 ) |
332 |
|
ltdivmul |
⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑢 ∈ ℝ ∧ ( 2 ∈ ℝ ∧ 0 < 2 ) ) → ( ( 𝑀 / 2 ) < 𝑢 ↔ 𝑀 < ( 2 · 𝑢 ) ) ) |
333 |
322 326 314 315 332
|
syl112anc |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → ( ( 𝑀 / 2 ) < 𝑢 ↔ 𝑀 < ( 2 · 𝑢 ) ) ) |
334 |
331 333
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → 𝑀 < ( 2 · 𝑢 ) ) |
335 |
4 334
|
eqbrtrrid |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → ( ( 𝑃 − 1 ) / 2 ) < ( 2 · 𝑢 ) ) |
336 |
65
|
nnred |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → 𝑃 ∈ ℝ ) |
337 |
|
peano2rem |
⊢ ( 𝑃 ∈ ℝ → ( 𝑃 − 1 ) ∈ ℝ ) |
338 |
336 337
|
syl |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → ( 𝑃 − 1 ) ∈ ℝ ) |
339 |
|
ltdivmul |
⊢ ( ( ( 𝑃 − 1 ) ∈ ℝ ∧ ( 2 · 𝑢 ) ∈ ℝ ∧ ( 2 ∈ ℝ ∧ 0 < 2 ) ) → ( ( ( 𝑃 − 1 ) / 2 ) < ( 2 · 𝑢 ) ↔ ( 𝑃 − 1 ) < ( 2 · ( 2 · 𝑢 ) ) ) ) |
340 |
338 22 314 315 339
|
syl112anc |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → ( ( ( 𝑃 − 1 ) / 2 ) < ( 2 · 𝑢 ) ↔ ( 𝑃 − 1 ) < ( 2 · ( 2 · 𝑢 ) ) ) ) |
341 |
335 340
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → ( 𝑃 − 1 ) < ( 2 · ( 2 · 𝑢 ) ) ) |
342 |
204
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → 𝑃 ∈ ℤ ) |
343 |
|
zmulcl |
⊢ ( ( 2 ∈ ℤ ∧ ( 2 · 𝑢 ) ∈ ℤ ) → ( 2 · ( 2 · 𝑢 ) ) ∈ ℤ ) |
344 |
17 21 343
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → ( 2 · ( 2 · 𝑢 ) ) ∈ ℤ ) |
345 |
|
zlem1lt |
⊢ ( ( 𝑃 ∈ ℤ ∧ ( 2 · ( 2 · 𝑢 ) ) ∈ ℤ ) → ( 𝑃 ≤ ( 2 · ( 2 · 𝑢 ) ) ↔ ( 𝑃 − 1 ) < ( 2 · ( 2 · 𝑢 ) ) ) ) |
346 |
342 344 345
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → ( 𝑃 ≤ ( 2 · ( 2 · 𝑢 ) ) ↔ ( 𝑃 − 1 ) < ( 2 · ( 2 · 𝑢 ) ) ) ) |
347 |
341 346
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → 𝑃 ≤ ( 2 · ( 2 · 𝑢 ) ) ) |
348 |
|
ledivmul |
⊢ ( ( 𝑃 ∈ ℝ ∧ ( 2 · 𝑢 ) ∈ ℝ ∧ ( 2 ∈ ℝ ∧ 0 < 2 ) ) → ( ( 𝑃 / 2 ) ≤ ( 2 · 𝑢 ) ↔ 𝑃 ≤ ( 2 · ( 2 · 𝑢 ) ) ) ) |
349 |
336 22 314 315 348
|
syl112anc |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → ( ( 𝑃 / 2 ) ≤ ( 2 · 𝑢 ) ↔ 𝑃 ≤ ( 2 · ( 2 · 𝑢 ) ) ) ) |
350 |
347 349
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → ( 𝑃 / 2 ) ≤ ( 2 · 𝑢 ) ) |
351 |
336
|
rehalfcld |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → ( 𝑃 / 2 ) ∈ ℝ ) |
352 |
270
|
nngt0d |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → 0 < 𝑄 ) |
353 |
|
lemul2 |
⊢ ( ( ( 𝑃 / 2 ) ∈ ℝ ∧ ( 2 · 𝑢 ) ∈ ℝ ∧ ( 𝑄 ∈ ℝ ∧ 0 < 𝑄 ) ) → ( ( 𝑃 / 2 ) ≤ ( 2 · 𝑢 ) ↔ ( 𝑄 · ( 𝑃 / 2 ) ) ≤ ( 𝑄 · ( 2 · 𝑢 ) ) ) ) |
354 |
351 22 243 352 353
|
syl112anc |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → ( ( 𝑃 / 2 ) ≤ ( 2 · 𝑢 ) ↔ ( 𝑄 · ( 𝑃 / 2 ) ) ≤ ( 𝑄 · ( 2 · 𝑢 ) ) ) ) |
355 |
350 354
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → ( 𝑄 · ( 𝑃 / 2 ) ) ≤ ( 𝑄 · ( 2 · 𝑢 ) ) ) |
356 |
321 355
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → ( ( 𝑄 / 2 ) · 𝑃 ) ≤ ( 𝑄 · ( 2 · 𝑢 ) ) ) |
357 |
243 22
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → ( 𝑄 · ( 2 · 𝑢 ) ) ∈ ℝ ) |
358 |
65
|
nngt0d |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → 0 < 𝑃 ) |
359 |
|
lemuldiv |
⊢ ( ( ( 𝑄 / 2 ) ∈ ℝ ∧ ( 𝑄 · ( 2 · 𝑢 ) ) ∈ ℝ ∧ ( 𝑃 ∈ ℝ ∧ 0 < 𝑃 ) ) → ( ( ( 𝑄 / 2 ) · 𝑃 ) ≤ ( 𝑄 · ( 2 · 𝑢 ) ) ↔ ( 𝑄 / 2 ) ≤ ( ( 𝑄 · ( 2 · 𝑢 ) ) / 𝑃 ) ) ) |
360 |
312 357 336 358 359
|
syl112anc |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → ( ( ( 𝑄 / 2 ) · 𝑃 ) ≤ ( 𝑄 · ( 2 · 𝑢 ) ) ↔ ( 𝑄 / 2 ) ≤ ( ( 𝑄 · ( 2 · 𝑢 ) ) / 𝑃 ) ) ) |
361 |
356 360
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → ( 𝑄 / 2 ) ≤ ( ( 𝑄 · ( 2 · 𝑢 ) ) / 𝑃 ) ) |
362 |
244 68 66 247
|
div23d |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → ( ( 𝑄 · ( 2 · 𝑢 ) ) / 𝑃 ) = ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) |
363 |
361 362
|
breqtrd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → ( 𝑄 / 2 ) ≤ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) |
364 |
306 312 23 320 363
|
letrd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → 𝑁 ≤ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) |
365 |
300
|
nnzd |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
366 |
365
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → 𝑁 ∈ ℤ ) |
367 |
|
flge |
⊢ ( ( ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ∈ ℝ ∧ 𝑁 ∈ ℤ ) → ( 𝑁 ≤ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ↔ 𝑁 ≤ ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) |
368 |
23 366 367
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → ( 𝑁 ≤ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ↔ 𝑁 ≤ ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) |
369 |
364 368
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → 𝑁 ≤ ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) |
370 |
311 369
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → ( ( 2 · 𝑁 ) − 𝑁 ) ≤ ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) |
371 |
304 306 307 370
|
subled |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → ( ( 2 · 𝑁 ) − ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ≤ 𝑁 ) |
372 |
371
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) ∧ 𝑦 ∈ ℕ ) → ( ( 2 · 𝑁 ) − ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ≤ 𝑁 ) |
373 |
303
|
nnzd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → ( 2 · 𝑁 ) ∈ ℤ ) |
374 |
373 24
|
zsubcld |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → ( ( 2 · 𝑁 ) − ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ∈ ℤ ) |
375 |
374
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) ∧ 𝑦 ∈ ℕ ) → ( ( 2 · 𝑁 ) − ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ∈ ℤ ) |
376 |
375
|
zred |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) ∧ 𝑦 ∈ ℕ ) → ( ( 2 · 𝑁 ) − ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ∈ ℝ ) |
377 |
300
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) ∧ 𝑦 ∈ ℕ ) → 𝑁 ∈ ℕ ) |
378 |
377
|
nnred |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) ∧ 𝑦 ∈ ℕ ) → 𝑁 ∈ ℝ ) |
379 |
|
letr |
⊢ ( ( 𝑦 ∈ ℝ ∧ ( ( 2 · 𝑁 ) − ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( ( 𝑦 ≤ ( ( 2 · 𝑁 ) − ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ∧ ( ( 2 · 𝑁 ) − ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ≤ 𝑁 ) → 𝑦 ≤ 𝑁 ) ) |
380 |
240 376 378 379
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) ∧ 𝑦 ∈ ℕ ) → ( ( 𝑦 ≤ ( ( 2 · 𝑁 ) − ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ∧ ( ( 2 · 𝑁 ) − ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ≤ 𝑁 ) → 𝑦 ≤ 𝑁 ) ) |
381 |
372 380
|
mpan2d |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) ∧ 𝑦 ∈ ℕ ) → ( 𝑦 ≤ ( ( 2 · 𝑁 ) − ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) → 𝑦 ≤ 𝑁 ) ) |
382 |
381
|
pm4.71rd |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) ∧ 𝑦 ∈ ℕ ) → ( 𝑦 ≤ ( ( 2 · 𝑁 ) − ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ↔ ( 𝑦 ≤ 𝑁 ∧ 𝑦 ≤ ( ( 2 · 𝑁 ) − ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) ) ) |
383 |
298 382
|
bitr4d |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) ∧ 𝑦 ∈ ℕ ) → ( ( 𝑦 ≤ 𝑁 ∧ ( 𝑦 · 𝑃 ) < ( ( 𝑃 − ( 2 · 𝑢 ) ) · 𝑄 ) ) ↔ 𝑦 ≤ ( ( 2 · 𝑁 ) − ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) ) |
384 |
383
|
pm5.32da |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → ( ( 𝑦 ∈ ℕ ∧ ( 𝑦 ≤ 𝑁 ∧ ( 𝑦 · 𝑃 ) < ( ( 𝑃 − ( 2 · 𝑢 ) ) · 𝑄 ) ) ) ↔ ( 𝑦 ∈ ℕ ∧ 𝑦 ≤ ( ( 2 · 𝑁 ) − ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) ) ) |
385 |
384
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) ∧ 𝑥 = ( 𝑃 − ( 2 · 𝑢 ) ) ) → ( ( 𝑦 ∈ ℕ ∧ ( 𝑦 ≤ 𝑁 ∧ ( 𝑦 · 𝑃 ) < ( ( 𝑃 − ( 2 · 𝑢 ) ) · 𝑄 ) ) ) ↔ ( 𝑦 ∈ ℕ ∧ 𝑦 ≤ ( ( 2 · 𝑁 ) − ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) ) ) |
386 |
234 385
|
syl5bb |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) ∧ 𝑥 = ( 𝑃 − ( 2 · 𝑢 ) ) ) → ( ( ( 𝑦 ∈ ℕ ∧ 𝑦 ≤ 𝑁 ) ∧ ( 𝑦 · 𝑃 ) < ( ( 𝑃 − ( 2 · 𝑢 ) ) · 𝑄 ) ) ↔ ( 𝑦 ∈ ℕ ∧ 𝑦 ≤ ( ( 2 · 𝑁 ) − ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) ) ) |
387 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) ∧ 𝑥 = ( 𝑃 − ( 2 · 𝑢 ) ) ) → 𝑥 = ( 𝑃 − ( 2 · 𝑢 ) ) ) |
388 |
342 21
|
zsubcld |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → ( 𝑃 − ( 2 · 𝑢 ) ) ∈ ℤ ) |
389 |
|
elfzle2 |
⊢ ( 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) → 𝑢 ≤ 𝑀 ) |
390 |
389
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → 𝑢 ≤ 𝑀 ) |
391 |
390 4
|
breqtrdi |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → 𝑢 ≤ ( ( 𝑃 − 1 ) / 2 ) ) |
392 |
|
lemuldiv2 |
⊢ ( ( 𝑢 ∈ ℝ ∧ ( 𝑃 − 1 ) ∈ ℝ ∧ ( 2 ∈ ℝ ∧ 0 < 2 ) ) → ( ( 2 · 𝑢 ) ≤ ( 𝑃 − 1 ) ↔ 𝑢 ≤ ( ( 𝑃 − 1 ) / 2 ) ) ) |
393 |
326 338 314 315 392
|
syl112anc |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → ( ( 2 · 𝑢 ) ≤ ( 𝑃 − 1 ) ↔ 𝑢 ≤ ( ( 𝑃 − 1 ) / 2 ) ) ) |
394 |
391 393
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → ( 2 · 𝑢 ) ≤ ( 𝑃 − 1 ) ) |
395 |
336
|
ltm1d |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → ( 𝑃 − 1 ) < 𝑃 ) |
396 |
22 338 336 394 395
|
lelttrd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → ( 2 · 𝑢 ) < 𝑃 ) |
397 |
22 336
|
posdifd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → ( ( 2 · 𝑢 ) < 𝑃 ↔ 0 < ( 𝑃 − ( 2 · 𝑢 ) ) ) ) |
398 |
396 397
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → 0 < ( 𝑃 − ( 2 · 𝑢 ) ) ) |
399 |
|
elnnz |
⊢ ( ( 𝑃 − ( 2 · 𝑢 ) ) ∈ ℕ ↔ ( ( 𝑃 − ( 2 · 𝑢 ) ) ∈ ℤ ∧ 0 < ( 𝑃 − ( 2 · 𝑢 ) ) ) ) |
400 |
388 398 399
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → ( 𝑃 − ( 2 · 𝑢 ) ) ∈ ℕ ) |
401 |
66 68 290
|
sub32d |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → ( ( 𝑃 − ( 2 · 𝑢 ) ) − 1 ) = ( ( 𝑃 − 1 ) − ( 2 · 𝑢 ) ) ) |
402 |
4 4
|
oveq12i |
⊢ ( 𝑀 + 𝑀 ) = ( ( ( 𝑃 − 1 ) / 2 ) + ( ( 𝑃 − 1 ) / 2 ) ) |
403 |
65
|
nnzd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → 𝑃 ∈ ℤ ) |
404 |
403 206
|
syl |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → ( 𝑃 − 1 ) ∈ ℤ ) |
405 |
404
|
zcnd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → ( 𝑃 − 1 ) ∈ ℂ ) |
406 |
405
|
2halvesd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → ( ( ( 𝑃 − 1 ) / 2 ) + ( ( 𝑃 − 1 ) / 2 ) ) = ( 𝑃 − 1 ) ) |
407 |
402 406
|
syl5eq |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → ( 𝑀 + 𝑀 ) = ( 𝑃 − 1 ) ) |
408 |
407
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → ( ( 𝑀 + 𝑀 ) − 𝑀 ) = ( ( 𝑃 − 1 ) − 𝑀 ) ) |
409 |
160
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → 𝑀 ∈ ℂ ) |
410 |
409 409
|
pncan2d |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → ( ( 𝑀 + 𝑀 ) − 𝑀 ) = 𝑀 ) |
411 |
408 410
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → ( ( 𝑃 − 1 ) − 𝑀 ) = 𝑀 ) |
412 |
411 334
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → ( ( 𝑃 − 1 ) − 𝑀 ) < ( 2 · 𝑢 ) ) |
413 |
338 322 22 412
|
ltsub23d |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → ( ( 𝑃 − 1 ) − ( 2 · 𝑢 ) ) < 𝑀 ) |
414 |
401 413
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → ( ( 𝑃 − ( 2 · 𝑢 ) ) − 1 ) < 𝑀 ) |
415 |
125
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → 𝑀 ∈ ℕ ) |
416 |
415
|
nnzd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → 𝑀 ∈ ℤ ) |
417 |
|
zlem1lt |
⊢ ( ( ( 𝑃 − ( 2 · 𝑢 ) ) ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( ( 𝑃 − ( 2 · 𝑢 ) ) ≤ 𝑀 ↔ ( ( 𝑃 − ( 2 · 𝑢 ) ) − 1 ) < 𝑀 ) ) |
418 |
388 416 417
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → ( ( 𝑃 − ( 2 · 𝑢 ) ) ≤ 𝑀 ↔ ( ( 𝑃 − ( 2 · 𝑢 ) ) − 1 ) < 𝑀 ) ) |
419 |
414 418
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → ( 𝑃 − ( 2 · 𝑢 ) ) ≤ 𝑀 ) |
420 |
|
fznn |
⊢ ( 𝑀 ∈ ℤ → ( ( 𝑃 − ( 2 · 𝑢 ) ) ∈ ( 1 ... 𝑀 ) ↔ ( ( 𝑃 − ( 2 · 𝑢 ) ) ∈ ℕ ∧ ( 𝑃 − ( 2 · 𝑢 ) ) ≤ 𝑀 ) ) ) |
421 |
416 420
|
syl |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → ( ( 𝑃 − ( 2 · 𝑢 ) ) ∈ ( 1 ... 𝑀 ) ↔ ( ( 𝑃 − ( 2 · 𝑢 ) ) ∈ ℕ ∧ ( 𝑃 − ( 2 · 𝑢 ) ) ≤ 𝑀 ) ) ) |
422 |
400 419 421
|
mpbir2and |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → ( 𝑃 − ( 2 · 𝑢 ) ) ∈ ( 1 ... 𝑀 ) ) |
423 |
422
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) ∧ 𝑥 = ( 𝑃 − ( 2 · 𝑢 ) ) ) → ( 𝑃 − ( 2 · 𝑢 ) ) ∈ ( 1 ... 𝑀 ) ) |
424 |
387 423
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) ∧ 𝑥 = ( 𝑃 − ( 2 · 𝑢 ) ) ) → 𝑥 ∈ ( 1 ... 𝑀 ) ) |
425 |
424
|
biantrurd |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) ∧ 𝑥 = ( 𝑃 − ( 2 · 𝑢 ) ) ) → ( 𝑦 ∈ ( 1 ... 𝑁 ) ↔ ( 𝑥 ∈ ( 1 ... 𝑀 ) ∧ 𝑦 ∈ ( 1 ... 𝑁 ) ) ) ) |
426 |
365
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) ∧ 𝑥 = ( 𝑃 − ( 2 · 𝑢 ) ) ) → 𝑁 ∈ ℤ ) |
427 |
|
fznn |
⊢ ( 𝑁 ∈ ℤ → ( 𝑦 ∈ ( 1 ... 𝑁 ) ↔ ( 𝑦 ∈ ℕ ∧ 𝑦 ≤ 𝑁 ) ) ) |
428 |
426 427
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) ∧ 𝑥 = ( 𝑃 − ( 2 · 𝑢 ) ) ) → ( 𝑦 ∈ ( 1 ... 𝑁 ) ↔ ( 𝑦 ∈ ℕ ∧ 𝑦 ≤ 𝑁 ) ) ) |
429 |
425 428
|
bitr3d |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) ∧ 𝑥 = ( 𝑃 − ( 2 · 𝑢 ) ) ) → ( ( 𝑥 ∈ ( 1 ... 𝑀 ) ∧ 𝑦 ∈ ( 1 ... 𝑁 ) ) ↔ ( 𝑦 ∈ ℕ ∧ 𝑦 ≤ 𝑁 ) ) ) |
430 |
387
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) ∧ 𝑥 = ( 𝑃 − ( 2 · 𝑢 ) ) ) → ( 𝑥 · 𝑄 ) = ( ( 𝑃 − ( 2 · 𝑢 ) ) · 𝑄 ) ) |
431 |
430
|
breq2d |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) ∧ 𝑥 = ( 𝑃 − ( 2 · 𝑢 ) ) ) → ( ( 𝑦 · 𝑃 ) < ( 𝑥 · 𝑄 ) ↔ ( 𝑦 · 𝑃 ) < ( ( 𝑃 − ( 2 · 𝑢 ) ) · 𝑄 ) ) ) |
432 |
429 431
|
anbi12d |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) ∧ 𝑥 = ( 𝑃 − ( 2 · 𝑢 ) ) ) → ( ( ( 𝑥 ∈ ( 1 ... 𝑀 ) ∧ 𝑦 ∈ ( 1 ... 𝑁 ) ) ∧ ( 𝑦 · 𝑃 ) < ( 𝑥 · 𝑄 ) ) ↔ ( ( 𝑦 ∈ ℕ ∧ 𝑦 ≤ 𝑁 ) ∧ ( 𝑦 · 𝑃 ) < ( ( 𝑃 − ( 2 · 𝑢 ) ) · 𝑄 ) ) ) ) |
433 |
374
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) ∧ 𝑥 = ( 𝑃 − ( 2 · 𝑢 ) ) ) → ( ( 2 · 𝑁 ) − ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ∈ ℤ ) |
434 |
|
fznn |
⊢ ( ( ( 2 · 𝑁 ) − ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ∈ ℤ → ( 𝑦 ∈ ( 1 ... ( ( 2 · 𝑁 ) − ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) ↔ ( 𝑦 ∈ ℕ ∧ 𝑦 ≤ ( ( 2 · 𝑁 ) − ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) ) ) |
435 |
433 434
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) ∧ 𝑥 = ( 𝑃 − ( 2 · 𝑢 ) ) ) → ( 𝑦 ∈ ( 1 ... ( ( 2 · 𝑁 ) − ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) ↔ ( 𝑦 ∈ ℕ ∧ 𝑦 ≤ ( ( 2 · 𝑁 ) − ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) ) ) |
436 |
386 432 435
|
3bitr4d |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) ∧ 𝑥 = ( 𝑃 − ( 2 · 𝑢 ) ) ) → ( ( ( 𝑥 ∈ ( 1 ... 𝑀 ) ∧ 𝑦 ∈ ( 1 ... 𝑁 ) ) ∧ ( 𝑦 · 𝑃 ) < ( 𝑥 · 𝑄 ) ) ↔ 𝑦 ∈ ( 1 ... ( ( 2 · 𝑁 ) − ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) ) ) |
437 |
233 436
|
syl5bb |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) ∧ 𝑥 = ( 𝑃 − ( 2 · 𝑢 ) ) ) → ( 〈 𝑥 , 𝑦 〉 ∈ 𝑆 ↔ 𝑦 ∈ ( 1 ... ( ( 2 · 𝑁 ) − ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) ) ) |
438 |
437
|
pm5.32da |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → ( ( 𝑥 = ( 𝑃 − ( 2 · 𝑢 ) ) ∧ 〈 𝑥 , 𝑦 〉 ∈ 𝑆 ) ↔ ( 𝑥 = ( 𝑃 − ( 2 · 𝑢 ) ) ∧ 𝑦 ∈ ( 1 ... ( ( 2 · 𝑁 ) − ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) ) ) ) |
439 |
|
vex |
⊢ 𝑥 ∈ V |
440 |
|
vex |
⊢ 𝑦 ∈ V |
441 |
439 440
|
op1std |
⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( 1st ‘ 𝑧 ) = 𝑥 ) |
442 |
441
|
eqeq1d |
⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( ( 1st ‘ 𝑧 ) = ( 𝑃 − ( 2 · 𝑢 ) ) ↔ 𝑥 = ( 𝑃 − ( 2 · 𝑢 ) ) ) ) |
443 |
442
|
elrab |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ { 𝑧 ∈ 𝑆 ∣ ( 1st ‘ 𝑧 ) = ( 𝑃 − ( 2 · 𝑢 ) ) } ↔ ( 〈 𝑥 , 𝑦 〉 ∈ 𝑆 ∧ 𝑥 = ( 𝑃 − ( 2 · 𝑢 ) ) ) ) |
444 |
443
|
biancomi |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ { 𝑧 ∈ 𝑆 ∣ ( 1st ‘ 𝑧 ) = ( 𝑃 − ( 2 · 𝑢 ) ) } ↔ ( 𝑥 = ( 𝑃 − ( 2 · 𝑢 ) ) ∧ 〈 𝑥 , 𝑦 〉 ∈ 𝑆 ) ) |
445 |
|
opelxp |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( { ( 𝑃 − ( 2 · 𝑢 ) ) } × ( 1 ... ( ( 2 · 𝑁 ) − ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) ) ↔ ( 𝑥 ∈ { ( 𝑃 − ( 2 · 𝑢 ) ) } ∧ 𝑦 ∈ ( 1 ... ( ( 2 · 𝑁 ) − ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) ) ) |
446 |
|
velsn |
⊢ ( 𝑥 ∈ { ( 𝑃 − ( 2 · 𝑢 ) ) } ↔ 𝑥 = ( 𝑃 − ( 2 · 𝑢 ) ) ) |
447 |
446
|
anbi1i |
⊢ ( ( 𝑥 ∈ { ( 𝑃 − ( 2 · 𝑢 ) ) } ∧ 𝑦 ∈ ( 1 ... ( ( 2 · 𝑁 ) − ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) ) ↔ ( 𝑥 = ( 𝑃 − ( 2 · 𝑢 ) ) ∧ 𝑦 ∈ ( 1 ... ( ( 2 · 𝑁 ) − ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) ) ) |
448 |
445 447
|
bitri |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( { ( 𝑃 − ( 2 · 𝑢 ) ) } × ( 1 ... ( ( 2 · 𝑁 ) − ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) ) ↔ ( 𝑥 = ( 𝑃 − ( 2 · 𝑢 ) ) ∧ 𝑦 ∈ ( 1 ... ( ( 2 · 𝑁 ) − ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) ) ) |
449 |
438 444 448
|
3bitr4g |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → ( 〈 𝑥 , 𝑦 〉 ∈ { 𝑧 ∈ 𝑆 ∣ ( 1st ‘ 𝑧 ) = ( 𝑃 − ( 2 · 𝑢 ) ) } ↔ 〈 𝑥 , 𝑦 〉 ∈ ( { ( 𝑃 − ( 2 · 𝑢 ) ) } × ( 1 ... ( ( 2 · 𝑁 ) − ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) ) ) ) |
450 |
229 230 449
|
eqrelrdv |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → { 𝑧 ∈ 𝑆 ∣ ( 1st ‘ 𝑧 ) = ( 𝑃 − ( 2 · 𝑢 ) ) } = ( { ( 𝑃 − ( 2 · 𝑢 ) ) } × ( 1 ... ( ( 2 · 𝑁 ) − ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) ) ) |
451 |
450
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → ( ♯ ‘ { 𝑧 ∈ 𝑆 ∣ ( 1st ‘ 𝑧 ) = ( 𝑃 − ( 2 · 𝑢 ) ) } ) = ( ♯ ‘ ( { ( 𝑃 − ( 2 · 𝑢 ) ) } × ( 1 ... ( ( 2 · 𝑁 ) − ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) ) ) ) |
452 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → ( 1 ... ( ( 2 · 𝑁 ) − ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) ∈ Fin ) |
453 |
|
xpsnen2g |
⊢ ( ( ( 𝑃 − ( 2 · 𝑢 ) ) ∈ ℤ ∧ ( 1 ... ( ( 2 · 𝑁 ) − ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) ∈ Fin ) → ( { ( 𝑃 − ( 2 · 𝑢 ) ) } × ( 1 ... ( ( 2 · 𝑁 ) − ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) ) ≈ ( 1 ... ( ( 2 · 𝑁 ) − ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) ) |
454 |
388 452 453
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → ( { ( 𝑃 − ( 2 · 𝑢 ) ) } × ( 1 ... ( ( 2 · 𝑁 ) − ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) ) ≈ ( 1 ... ( ( 2 · 𝑁 ) − ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) ) |
455 |
|
hasheni |
⊢ ( ( { ( 𝑃 − ( 2 · 𝑢 ) ) } × ( 1 ... ( ( 2 · 𝑁 ) − ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) ) ≈ ( 1 ... ( ( 2 · 𝑁 ) − ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) → ( ♯ ‘ ( { ( 𝑃 − ( 2 · 𝑢 ) ) } × ( 1 ... ( ( 2 · 𝑁 ) − ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) ) ) = ( ♯ ‘ ( 1 ... ( ( 2 · 𝑁 ) − ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) ) ) |
456 |
454 455
|
syl |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → ( ♯ ‘ ( { ( 𝑃 − ( 2 · 𝑢 ) ) } × ( 1 ... ( ( 2 · 𝑁 ) − ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) ) ) = ( ♯ ‘ ( 1 ... ( ( 2 · 𝑁 ) − ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) ) ) |
457 |
|
ltmul2 |
⊢ ( ( ( 2 · 𝑢 ) ∈ ℝ ∧ 𝑃 ∈ ℝ ∧ ( 𝑄 ∈ ℝ ∧ 0 < 𝑄 ) ) → ( ( 2 · 𝑢 ) < 𝑃 ↔ ( 𝑄 · ( 2 · 𝑢 ) ) < ( 𝑄 · 𝑃 ) ) ) |
458 |
22 336 243 352 457
|
syl112anc |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → ( ( 2 · 𝑢 ) < 𝑃 ↔ ( 𝑄 · ( 2 · 𝑢 ) ) < ( 𝑄 · 𝑃 ) ) ) |
459 |
396 458
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → ( 𝑄 · ( 2 · 𝑢 ) ) < ( 𝑄 · 𝑃 ) ) |
460 |
|
ltdivmul2 |
⊢ ( ( ( 𝑄 · ( 2 · 𝑢 ) ) ∈ ℝ ∧ 𝑄 ∈ ℝ ∧ ( 𝑃 ∈ ℝ ∧ 0 < 𝑃 ) ) → ( ( ( 𝑄 · ( 2 · 𝑢 ) ) / 𝑃 ) < 𝑄 ↔ ( 𝑄 · ( 2 · 𝑢 ) ) < ( 𝑄 · 𝑃 ) ) ) |
461 |
357 243 336 358 460
|
syl112anc |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → ( ( ( 𝑄 · ( 2 · 𝑢 ) ) / 𝑃 ) < 𝑄 ↔ ( 𝑄 · ( 2 · 𝑢 ) ) < ( 𝑄 · 𝑃 ) ) ) |
462 |
459 461
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → ( ( 𝑄 · ( 2 · 𝑢 ) ) / 𝑃 ) < 𝑄 ) |
463 |
362 462
|
eqbrtrrd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) < 𝑄 ) |
464 |
|
fllt |
⊢ ( ( ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ∈ ℝ ∧ 𝑄 ∈ ℤ ) → ( ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) < 𝑄 ↔ ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) < 𝑄 ) ) |
465 |
23 271 464
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → ( ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) < 𝑄 ↔ ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) < 𝑄 ) ) |
466 |
463 465
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) < 𝑄 ) |
467 |
|
zltlem1 |
⊢ ( ( ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ∈ ℤ ∧ 𝑄 ∈ ℤ ) → ( ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) < 𝑄 ↔ ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ≤ ( 𝑄 − 1 ) ) ) |
468 |
24 271 467
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → ( ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) < 𝑄 ↔ ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ≤ ( 𝑄 − 1 ) ) ) |
469 |
466 468
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ≤ ( 𝑄 − 1 ) ) |
470 |
469 288
|
breqtrrd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ≤ ( 2 · 𝑁 ) ) |
471 |
|
eluz2 |
⊢ ( ( 2 · 𝑁 ) ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ↔ ( ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ∈ ℤ ∧ ( 2 · 𝑁 ) ∈ ℤ ∧ ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ≤ ( 2 · 𝑁 ) ) ) |
472 |
24 373 470 471
|
syl3anbrc |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → ( 2 · 𝑁 ) ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) |
473 |
|
uznn0sub |
⊢ ( ( 2 · 𝑁 ) ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) → ( ( 2 · 𝑁 ) − ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ∈ ℕ0 ) |
474 |
|
hashfz1 |
⊢ ( ( ( 2 · 𝑁 ) − ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ∈ ℕ0 → ( ♯ ‘ ( 1 ... ( ( 2 · 𝑁 ) − ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) ) = ( ( 2 · 𝑁 ) − ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) |
475 |
472 473 474
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → ( ♯ ‘ ( 1 ... ( ( 2 · 𝑁 ) − ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) ) = ( ( 2 · 𝑁 ) − ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) |
476 |
451 456 475
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → ( ♯ ‘ { 𝑧 ∈ 𝑆 ∣ ( 1st ‘ 𝑧 ) = ( 𝑃 − ( 2 · 𝑢 ) ) } ) = ( ( 2 · 𝑁 ) − ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) |
477 |
476
|
sumeq2dv |
⊢ ( 𝜑 → Σ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ( ♯ ‘ { 𝑧 ∈ 𝑆 ∣ ( 1st ‘ 𝑧 ) = ( 𝑃 − ( 2 · 𝑢 ) ) } ) = Σ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ( ( 2 · 𝑁 ) − ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) |
478 |
83 226 477
|
3eqtr3rd |
⊢ ( 𝜑 → Σ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ( ( 2 · 𝑁 ) − ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) = ( ♯ ‘ { 𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ ( 1st ‘ 𝑧 ) } ) ) |
479 |
302
|
nncnd |
⊢ ( 𝜑 → ( 2 · 𝑁 ) ∈ ℂ ) |
480 |
479
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → ( 2 · 𝑁 ) ∈ ℂ ) |
481 |
11 480 291
|
fsumsub |
⊢ ( 𝜑 → Σ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ( ( 2 · 𝑁 ) − ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) = ( Σ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ( 2 · 𝑁 ) − Σ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) |
482 |
478 481
|
eqtr3d |
⊢ ( 𝜑 → ( ♯ ‘ { 𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ ( 1st ‘ 𝑧 ) } ) = ( Σ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ( 2 · 𝑁 ) − Σ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) |
483 |
482
|
oveq2d |
⊢ ( 𝜑 → ( Σ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) + ( ♯ ‘ { 𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ ( 1st ‘ 𝑧 ) } ) ) = ( Σ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) + ( Σ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ( 2 · 𝑁 ) − Σ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) ) |
484 |
25
|
zcnd |
⊢ ( 𝜑 → Σ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ∈ ℂ ) |
485 |
11 373
|
fsumzcl |
⊢ ( 𝜑 → Σ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ( 2 · 𝑁 ) ∈ ℤ ) |
486 |
485
|
zcnd |
⊢ ( 𝜑 → Σ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ( 2 · 𝑁 ) ∈ ℂ ) |
487 |
484 486
|
pncan3d |
⊢ ( 𝜑 → ( Σ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) + ( Σ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ( 2 · 𝑁 ) − Σ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) = Σ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ( 2 · 𝑁 ) ) |
488 |
|
fsumconst |
⊢ ( ( ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ∈ Fin ∧ ( 2 · 𝑁 ) ∈ ℂ ) → Σ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ( 2 · 𝑁 ) = ( ( ♯ ‘ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) · ( 2 · 𝑁 ) ) ) |
489 |
11 479 488
|
syl2anc |
⊢ ( 𝜑 → Σ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ( 2 · 𝑁 ) = ( ( ♯ ‘ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) · ( 2 · 𝑁 ) ) ) |
490 |
|
hashcl |
⊢ ( ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ∈ Fin → ( ♯ ‘ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) ∈ ℕ0 ) |
491 |
11 490
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) ∈ ℕ0 ) |
492 |
491
|
nn0cnd |
⊢ ( 𝜑 → ( ♯ ‘ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) ∈ ℂ ) |
493 |
|
2cnd |
⊢ ( 𝜑 → 2 ∈ ℂ ) |
494 |
492 493 308
|
mul12d |
⊢ ( 𝜑 → ( ( ♯ ‘ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) · ( 2 · 𝑁 ) ) = ( 2 · ( ( ♯ ‘ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) · 𝑁 ) ) ) |
495 |
489 494
|
eqtrd |
⊢ ( 𝜑 → Σ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ( 2 · 𝑁 ) = ( 2 · ( ( ♯ ‘ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) · 𝑁 ) ) ) |
496 |
483 487 495
|
3eqtrd |
⊢ ( 𝜑 → ( Σ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) + ( ♯ ‘ { 𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ ( 1st ‘ 𝑧 ) } ) ) = ( 2 · ( ( ♯ ‘ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) · 𝑁 ) ) ) |
497 |
496
|
oveq2d |
⊢ ( 𝜑 → ( - 1 ↑ ( Σ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) + ( ♯ ‘ { 𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ ( 1st ‘ 𝑧 ) } ) ) ) = ( - 1 ↑ ( 2 · ( ( ♯ ‘ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) · 𝑁 ) ) ) ) |
498 |
17
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℤ ) |
499 |
491
|
nn0zd |
⊢ ( 𝜑 → ( ♯ ‘ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) ∈ ℤ ) |
500 |
499 365
|
zmulcld |
⊢ ( 𝜑 → ( ( ♯ ‘ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) · 𝑁 ) ∈ ℤ ) |
501 |
|
expmulz |
⊢ ( ( ( - 1 ∈ ℂ ∧ - 1 ≠ 0 ) ∧ ( 2 ∈ ℤ ∧ ( ( ♯ ‘ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) · 𝑁 ) ∈ ℤ ) ) → ( - 1 ↑ ( 2 · ( ( ♯ ‘ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) · 𝑁 ) ) ) = ( ( - 1 ↑ 2 ) ↑ ( ( ♯ ‘ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) · 𝑁 ) ) ) |
502 |
8 10 498 500 501
|
syl22anc |
⊢ ( 𝜑 → ( - 1 ↑ ( 2 · ( ( ♯ ‘ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) · 𝑁 ) ) ) = ( ( - 1 ↑ 2 ) ↑ ( ( ♯ ‘ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) · 𝑁 ) ) ) |
503 |
|
neg1sqe1 |
⊢ ( - 1 ↑ 2 ) = 1 |
504 |
503
|
oveq1i |
⊢ ( ( - 1 ↑ 2 ) ↑ ( ( ♯ ‘ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) · 𝑁 ) ) = ( 1 ↑ ( ( ♯ ‘ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) · 𝑁 ) ) |
505 |
|
1exp |
⊢ ( ( ( ♯ ‘ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) · 𝑁 ) ∈ ℤ → ( 1 ↑ ( ( ♯ ‘ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) · 𝑁 ) ) = 1 ) |
506 |
500 505
|
syl |
⊢ ( 𝜑 → ( 1 ↑ ( ( ♯ ‘ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) · 𝑁 ) ) = 1 ) |
507 |
504 506
|
syl5eq |
⊢ ( 𝜑 → ( ( - 1 ↑ 2 ) ↑ ( ( ♯ ‘ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) · 𝑁 ) ) = 1 ) |
508 |
497 502 507
|
3eqtrd |
⊢ ( 𝜑 → ( - 1 ↑ ( Σ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) + ( ♯ ‘ { 𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ ( 1st ‘ 𝑧 ) } ) ) ) = 1 ) |
509 |
44 55 508
|
3eqtr4d |
⊢ ( 𝜑 → ( ( - 1 ↑ ( ♯ ‘ { 𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ ( 1st ‘ 𝑧 ) } ) ) · ( - 1 ↑ ( ♯ ‘ { 𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ ( 1st ‘ 𝑧 ) } ) ) ) = ( - 1 ↑ ( Σ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) + ( ♯ ‘ { 𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ ( 1st ‘ 𝑧 ) } ) ) ) ) |
510 |
|
expaddz |
⊢ ( ( ( - 1 ∈ ℂ ∧ - 1 ≠ 0 ) ∧ ( Σ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ∈ ℤ ∧ ( ♯ ‘ { 𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ ( 1st ‘ 𝑧 ) } ) ∈ ℤ ) ) → ( - 1 ↑ ( Σ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) + ( ♯ ‘ { 𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ ( 1st ‘ 𝑧 ) } ) ) ) = ( ( - 1 ↑ Σ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) · ( - 1 ↑ ( ♯ ‘ { 𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ ( 1st ‘ 𝑧 ) } ) ) ) ) |
511 |
8 10 25 42 510
|
syl22anc |
⊢ ( 𝜑 → ( - 1 ↑ ( Σ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) + ( ♯ ‘ { 𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ ( 1st ‘ 𝑧 ) } ) ) ) = ( ( - 1 ↑ Σ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) · ( - 1 ↑ ( ♯ ‘ { 𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ ( 1st ‘ 𝑧 ) } ) ) ) ) |
512 |
509 511
|
eqtr2d |
⊢ ( 𝜑 → ( ( - 1 ↑ Σ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) · ( - 1 ↑ ( ♯ ‘ { 𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ ( 1st ‘ 𝑧 ) } ) ) ) = ( ( - 1 ↑ ( ♯ ‘ { 𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ ( 1st ‘ 𝑧 ) } ) ) · ( - 1 ↑ ( ♯ ‘ { 𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ ( 1st ‘ 𝑧 ) } ) ) ) ) |
513 |
26 41 41 43 512
|
mulcan2ad |
⊢ ( 𝜑 → ( - 1 ↑ Σ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) = ( - 1 ↑ ( ♯ ‘ { 𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ ( 1st ‘ 𝑧 ) } ) ) ) |