Step |
Hyp |
Ref |
Expression |
1 |
|
lgseisen.1 |
⊢ ( 𝜑 → 𝑃 ∈ ( ℙ ∖ { 2 } ) ) |
2 |
|
lgseisen.2 |
⊢ ( 𝜑 → 𝑄 ∈ ( ℙ ∖ { 2 } ) ) |
3 |
|
lgseisen.3 |
⊢ ( 𝜑 → 𝑃 ≠ 𝑄 ) |
4 |
|
lgsquad.4 |
⊢ 𝑀 = ( ( 𝑃 − 1 ) / 2 ) |
5 |
|
lgsquad.5 |
⊢ 𝑁 = ( ( 𝑄 − 1 ) / 2 ) |
6 |
|
lgsquad.6 |
⊢ 𝑆 = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ ( 1 ... 𝑀 ) ∧ 𝑦 ∈ ( 1 ... 𝑁 ) ) ∧ ( 𝑦 · 𝑃 ) < ( 𝑥 · 𝑄 ) ) } |
7 |
1 2 3
|
lgseisen |
⊢ ( 𝜑 → ( 𝑄 /L 𝑃 ) = ( - 1 ↑ Σ 𝑢 ∈ ( 1 ... ( ( 𝑃 − 1 ) / 2 ) ) ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) |
8 |
4
|
oveq2i |
⊢ ( 1 ... 𝑀 ) = ( 1 ... ( ( 𝑃 − 1 ) / 2 ) ) |
9 |
8
|
sumeq1i |
⊢ Σ 𝑢 ∈ ( 1 ... 𝑀 ) ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) = Σ 𝑢 ∈ ( 1 ... ( ( 𝑃 − 1 ) / 2 ) ) ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) |
10 |
1 4
|
gausslemma2dlem0b |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
11 |
10
|
nnred |
⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
12 |
11
|
rehalfcld |
⊢ ( 𝜑 → ( 𝑀 / 2 ) ∈ ℝ ) |
13 |
12
|
flcld |
⊢ ( 𝜑 → ( ⌊ ‘ ( 𝑀 / 2 ) ) ∈ ℤ ) |
14 |
13
|
zred |
⊢ ( 𝜑 → ( ⌊ ‘ ( 𝑀 / 2 ) ) ∈ ℝ ) |
15 |
14
|
ltp1d |
⊢ ( 𝜑 → ( ⌊ ‘ ( 𝑀 / 2 ) ) < ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ) |
16 |
|
fzdisj |
⊢ ( ( ⌊ ‘ ( 𝑀 / 2 ) ) < ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) → ( ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ∩ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) = ∅ ) |
17 |
15 16
|
syl |
⊢ ( 𝜑 → ( ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ∩ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) = ∅ ) |
18 |
10
|
nnrpd |
⊢ ( 𝜑 → 𝑀 ∈ ℝ+ ) |
19 |
18
|
rphalfcld |
⊢ ( 𝜑 → ( 𝑀 / 2 ) ∈ ℝ+ ) |
20 |
19
|
rpge0d |
⊢ ( 𝜑 → 0 ≤ ( 𝑀 / 2 ) ) |
21 |
|
flge0nn0 |
⊢ ( ( ( 𝑀 / 2 ) ∈ ℝ ∧ 0 ≤ ( 𝑀 / 2 ) ) → ( ⌊ ‘ ( 𝑀 / 2 ) ) ∈ ℕ0 ) |
22 |
12 20 21
|
syl2anc |
⊢ ( 𝜑 → ( ⌊ ‘ ( 𝑀 / 2 ) ) ∈ ℕ0 ) |
23 |
10
|
nnnn0d |
⊢ ( 𝜑 → 𝑀 ∈ ℕ0 ) |
24 |
|
rphalflt |
⊢ ( 𝑀 ∈ ℝ+ → ( 𝑀 / 2 ) < 𝑀 ) |
25 |
18 24
|
syl |
⊢ ( 𝜑 → ( 𝑀 / 2 ) < 𝑀 ) |
26 |
10
|
nnzd |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
27 |
|
fllt |
⊢ ( ( ( 𝑀 / 2 ) ∈ ℝ ∧ 𝑀 ∈ ℤ ) → ( ( 𝑀 / 2 ) < 𝑀 ↔ ( ⌊ ‘ ( 𝑀 / 2 ) ) < 𝑀 ) ) |
28 |
12 26 27
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑀 / 2 ) < 𝑀 ↔ ( ⌊ ‘ ( 𝑀 / 2 ) ) < 𝑀 ) ) |
29 |
25 28
|
mpbid |
⊢ ( 𝜑 → ( ⌊ ‘ ( 𝑀 / 2 ) ) < 𝑀 ) |
30 |
14 11 29
|
ltled |
⊢ ( 𝜑 → ( ⌊ ‘ ( 𝑀 / 2 ) ) ≤ 𝑀 ) |
31 |
|
elfz2nn0 |
⊢ ( ( ⌊ ‘ ( 𝑀 / 2 ) ) ∈ ( 0 ... 𝑀 ) ↔ ( ( ⌊ ‘ ( 𝑀 / 2 ) ) ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ ( ⌊ ‘ ( 𝑀 / 2 ) ) ≤ 𝑀 ) ) |
32 |
22 23 30 31
|
syl3anbrc |
⊢ ( 𝜑 → ( ⌊ ‘ ( 𝑀 / 2 ) ) ∈ ( 0 ... 𝑀 ) ) |
33 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
34 |
23 33
|
eleqtrdi |
⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ 0 ) ) |
35 |
|
elfzp12 |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 0 ) → ( ( ⌊ ‘ ( 𝑀 / 2 ) ) ∈ ( 0 ... 𝑀 ) ↔ ( ( ⌊ ‘ ( 𝑀 / 2 ) ) = 0 ∨ ( ⌊ ‘ ( 𝑀 / 2 ) ) ∈ ( ( 0 + 1 ) ... 𝑀 ) ) ) ) |
36 |
34 35
|
syl |
⊢ ( 𝜑 → ( ( ⌊ ‘ ( 𝑀 / 2 ) ) ∈ ( 0 ... 𝑀 ) ↔ ( ( ⌊ ‘ ( 𝑀 / 2 ) ) = 0 ∨ ( ⌊ ‘ ( 𝑀 / 2 ) ) ∈ ( ( 0 + 1 ) ... 𝑀 ) ) ) ) |
37 |
32 36
|
mpbid |
⊢ ( 𝜑 → ( ( ⌊ ‘ ( 𝑀 / 2 ) ) = 0 ∨ ( ⌊ ‘ ( 𝑀 / 2 ) ) ∈ ( ( 0 + 1 ) ... 𝑀 ) ) ) |
38 |
|
un0 |
⊢ ( ( 1 ... 𝑀 ) ∪ ∅ ) = ( 1 ... 𝑀 ) |
39 |
|
uncom |
⊢ ( ( 1 ... 𝑀 ) ∪ ∅ ) = ( ∅ ∪ ( 1 ... 𝑀 ) ) |
40 |
38 39
|
eqtr3i |
⊢ ( 1 ... 𝑀 ) = ( ∅ ∪ ( 1 ... 𝑀 ) ) |
41 |
|
oveq2 |
⊢ ( ( ⌊ ‘ ( 𝑀 / 2 ) ) = 0 → ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) = ( 1 ... 0 ) ) |
42 |
|
fz10 |
⊢ ( 1 ... 0 ) = ∅ |
43 |
41 42
|
eqtrdi |
⊢ ( ( ⌊ ‘ ( 𝑀 / 2 ) ) = 0 → ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) = ∅ ) |
44 |
|
oveq1 |
⊢ ( ( ⌊ ‘ ( 𝑀 / 2 ) ) = 0 → ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) = ( 0 + 1 ) ) |
45 |
|
0p1e1 |
⊢ ( 0 + 1 ) = 1 |
46 |
44 45
|
eqtrdi |
⊢ ( ( ⌊ ‘ ( 𝑀 / 2 ) ) = 0 → ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) = 1 ) |
47 |
46
|
oveq1d |
⊢ ( ( ⌊ ‘ ( 𝑀 / 2 ) ) = 0 → ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) = ( 1 ... 𝑀 ) ) |
48 |
43 47
|
uneq12d |
⊢ ( ( ⌊ ‘ ( 𝑀 / 2 ) ) = 0 → ( ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ∪ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) = ( ∅ ∪ ( 1 ... 𝑀 ) ) ) |
49 |
40 48
|
eqtr4id |
⊢ ( ( ⌊ ‘ ( 𝑀 / 2 ) ) = 0 → ( 1 ... 𝑀 ) = ( ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ∪ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) ) |
50 |
|
fzsplit |
⊢ ( ( ⌊ ‘ ( 𝑀 / 2 ) ) ∈ ( 1 ... 𝑀 ) → ( 1 ... 𝑀 ) = ( ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ∪ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) ) |
51 |
45
|
oveq1i |
⊢ ( ( 0 + 1 ) ... 𝑀 ) = ( 1 ... 𝑀 ) |
52 |
50 51
|
eleq2s |
⊢ ( ( ⌊ ‘ ( 𝑀 / 2 ) ) ∈ ( ( 0 + 1 ) ... 𝑀 ) → ( 1 ... 𝑀 ) = ( ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ∪ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) ) |
53 |
49 52
|
jaoi |
⊢ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) = 0 ∨ ( ⌊ ‘ ( 𝑀 / 2 ) ) ∈ ( ( 0 + 1 ) ... 𝑀 ) ) → ( 1 ... 𝑀 ) = ( ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ∪ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) ) |
54 |
37 53
|
syl |
⊢ ( 𝜑 → ( 1 ... 𝑀 ) = ( ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ∪ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) ) |
55 |
|
fzfid |
⊢ ( 𝜑 → ( 1 ... 𝑀 ) ∈ Fin ) |
56 |
2
|
gausslemma2dlem0a |
⊢ ( 𝜑 → 𝑄 ∈ ℕ ) |
57 |
56
|
nnred |
⊢ ( 𝜑 → 𝑄 ∈ ℝ ) |
58 |
1
|
gausslemma2dlem0a |
⊢ ( 𝜑 → 𝑃 ∈ ℕ ) |
59 |
57 58
|
nndivred |
⊢ ( 𝜑 → ( 𝑄 / 𝑃 ) ∈ ℝ ) |
60 |
59
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... 𝑀 ) ) → ( 𝑄 / 𝑃 ) ∈ ℝ ) |
61 |
|
2nn |
⊢ 2 ∈ ℕ |
62 |
|
elfznn |
⊢ ( 𝑢 ∈ ( 1 ... 𝑀 ) → 𝑢 ∈ ℕ ) |
63 |
62
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... 𝑀 ) ) → 𝑢 ∈ ℕ ) |
64 |
|
nnmulcl |
⊢ ( ( 2 ∈ ℕ ∧ 𝑢 ∈ ℕ ) → ( 2 · 𝑢 ) ∈ ℕ ) |
65 |
61 63 64
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... 𝑀 ) ) → ( 2 · 𝑢 ) ∈ ℕ ) |
66 |
65
|
nnred |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... 𝑀 ) ) → ( 2 · 𝑢 ) ∈ ℝ ) |
67 |
60 66
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... 𝑀 ) ) → ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ∈ ℝ ) |
68 |
56
|
nnrpd |
⊢ ( 𝜑 → 𝑄 ∈ ℝ+ ) |
69 |
58
|
nnrpd |
⊢ ( 𝜑 → 𝑃 ∈ ℝ+ ) |
70 |
68 69
|
rpdivcld |
⊢ ( 𝜑 → ( 𝑄 / 𝑃 ) ∈ ℝ+ ) |
71 |
70
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... 𝑀 ) ) → ( 𝑄 / 𝑃 ) ∈ ℝ+ ) |
72 |
65
|
nnrpd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... 𝑀 ) ) → ( 2 · 𝑢 ) ∈ ℝ+ ) |
73 |
71 72
|
rpmulcld |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... 𝑀 ) ) → ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ∈ ℝ+ ) |
74 |
73
|
rpge0d |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... 𝑀 ) ) → 0 ≤ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) |
75 |
|
flge0nn0 |
⊢ ( ( ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ∈ ℝ ∧ 0 ≤ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) → ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ∈ ℕ0 ) |
76 |
67 74 75
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... 𝑀 ) ) → ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ∈ ℕ0 ) |
77 |
76
|
nn0cnd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... 𝑀 ) ) → ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ∈ ℂ ) |
78 |
17 54 55 77
|
fsumsplit |
⊢ ( 𝜑 → Σ 𝑢 ∈ ( 1 ... 𝑀 ) ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) = ( Σ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) + Σ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) |
79 |
9 78
|
eqtr3id |
⊢ ( 𝜑 → Σ 𝑢 ∈ ( 1 ... ( ( 𝑃 − 1 ) / 2 ) ) ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) = ( Σ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) + Σ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) |
80 |
79
|
oveq2d |
⊢ ( 𝜑 → ( - 1 ↑ Σ 𝑢 ∈ ( 1 ... ( ( 𝑃 − 1 ) / 2 ) ) ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) = ( - 1 ↑ ( Σ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) + Σ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) ) |
81 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
82 |
81
|
a1i |
⊢ ( 𝜑 → - 1 ∈ ℂ ) |
83 |
|
fzfid |
⊢ ( 𝜑 → ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ∈ Fin ) |
84 |
|
ssun2 |
⊢ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ⊆ ( ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ∪ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) |
85 |
84 54
|
sseqtrrid |
⊢ ( 𝜑 → ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ⊆ ( 1 ... 𝑀 ) ) |
86 |
85
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → 𝑢 ∈ ( 1 ... 𝑀 ) ) |
87 |
86 76
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ∈ ℕ0 ) |
88 |
83 87
|
fsumnn0cl |
⊢ ( 𝜑 → Σ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ∈ ℕ0 ) |
89 |
|
fzfid |
⊢ ( 𝜑 → ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ∈ Fin ) |
90 |
|
ssun1 |
⊢ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ⊆ ( ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ∪ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) |
91 |
90 54
|
sseqtrrid |
⊢ ( 𝜑 → ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ⊆ ( 1 ... 𝑀 ) ) |
92 |
91
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) → 𝑢 ∈ ( 1 ... 𝑀 ) ) |
93 |
92 76
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) → ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ∈ ℕ0 ) |
94 |
89 93
|
fsumnn0cl |
⊢ ( 𝜑 → Σ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ∈ ℕ0 ) |
95 |
82 88 94
|
expaddd |
⊢ ( 𝜑 → ( - 1 ↑ ( Σ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) + Σ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) = ( ( - 1 ↑ Σ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) · ( - 1 ↑ Σ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) ) |
96 |
|
fzfid |
⊢ ( 𝜑 → ( 1 ... 𝑁 ) ∈ Fin ) |
97 |
|
xpfi |
⊢ ( ( ( 1 ... 𝑀 ) ∈ Fin ∧ ( 1 ... 𝑁 ) ∈ Fin ) → ( ( 1 ... 𝑀 ) × ( 1 ... 𝑁 ) ) ∈ Fin ) |
98 |
55 96 97
|
syl2anc |
⊢ ( 𝜑 → ( ( 1 ... 𝑀 ) × ( 1 ... 𝑁 ) ) ∈ Fin ) |
99 |
|
opabssxp |
⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ ( 1 ... 𝑀 ) ∧ 𝑦 ∈ ( 1 ... 𝑁 ) ) ∧ ( 𝑦 · 𝑃 ) < ( 𝑥 · 𝑄 ) ) } ⊆ ( ( 1 ... 𝑀 ) × ( 1 ... 𝑁 ) ) |
100 |
6 99
|
eqsstri |
⊢ 𝑆 ⊆ ( ( 1 ... 𝑀 ) × ( 1 ... 𝑁 ) ) |
101 |
|
ssfi |
⊢ ( ( ( ( 1 ... 𝑀 ) × ( 1 ... 𝑁 ) ) ∈ Fin ∧ 𝑆 ⊆ ( ( 1 ... 𝑀 ) × ( 1 ... 𝑁 ) ) ) → 𝑆 ∈ Fin ) |
102 |
98 100 101
|
sylancl |
⊢ ( 𝜑 → 𝑆 ∈ Fin ) |
103 |
|
ssrab2 |
⊢ { 𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ ( 1st ‘ 𝑧 ) } ⊆ 𝑆 |
104 |
|
ssfi |
⊢ ( ( 𝑆 ∈ Fin ∧ { 𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ ( 1st ‘ 𝑧 ) } ⊆ 𝑆 ) → { 𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ ( 1st ‘ 𝑧 ) } ∈ Fin ) |
105 |
102 103 104
|
sylancl |
⊢ ( 𝜑 → { 𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ ( 1st ‘ 𝑧 ) } ∈ Fin ) |
106 |
|
hashcl |
⊢ ( { 𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ ( 1st ‘ 𝑧 ) } ∈ Fin → ( ♯ ‘ { 𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ ( 1st ‘ 𝑧 ) } ) ∈ ℕ0 ) |
107 |
105 106
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ { 𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ ( 1st ‘ 𝑧 ) } ) ∈ ℕ0 ) |
108 |
|
ssrab2 |
⊢ { 𝑧 ∈ 𝑆 ∣ 2 ∥ ( 1st ‘ 𝑧 ) } ⊆ 𝑆 |
109 |
|
ssfi |
⊢ ( ( 𝑆 ∈ Fin ∧ { 𝑧 ∈ 𝑆 ∣ 2 ∥ ( 1st ‘ 𝑧 ) } ⊆ 𝑆 ) → { 𝑧 ∈ 𝑆 ∣ 2 ∥ ( 1st ‘ 𝑧 ) } ∈ Fin ) |
110 |
102 108 109
|
sylancl |
⊢ ( 𝜑 → { 𝑧 ∈ 𝑆 ∣ 2 ∥ ( 1st ‘ 𝑧 ) } ∈ Fin ) |
111 |
|
hashcl |
⊢ ( { 𝑧 ∈ 𝑆 ∣ 2 ∥ ( 1st ‘ 𝑧 ) } ∈ Fin → ( ♯ ‘ { 𝑧 ∈ 𝑆 ∣ 2 ∥ ( 1st ‘ 𝑧 ) } ) ∈ ℕ0 ) |
112 |
110 111
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ { 𝑧 ∈ 𝑆 ∣ 2 ∥ ( 1st ‘ 𝑧 ) } ) ∈ ℕ0 ) |
113 |
82 107 112
|
expaddd |
⊢ ( 𝜑 → ( - 1 ↑ ( ( ♯ ‘ { 𝑧 ∈ 𝑆 ∣ 2 ∥ ( 1st ‘ 𝑧 ) } ) + ( ♯ ‘ { 𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ ( 1st ‘ 𝑧 ) } ) ) ) = ( ( - 1 ↑ ( ♯ ‘ { 𝑧 ∈ 𝑆 ∣ 2 ∥ ( 1st ‘ 𝑧 ) } ) ) · ( - 1 ↑ ( ♯ ‘ { 𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ ( 1st ‘ 𝑧 ) } ) ) ) ) |
114 |
92 65
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) → ( 2 · 𝑢 ) ∈ ℕ ) |
115 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) → ( 1 ... ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ∈ Fin ) |
116 |
|
xpsnen2g |
⊢ ( ( ( 2 · 𝑢 ) ∈ ℕ ∧ ( 1 ... ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ∈ Fin ) → ( { ( 2 · 𝑢 ) } × ( 1 ... ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) ≈ ( 1 ... ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) |
117 |
114 115 116
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) → ( { ( 2 · 𝑢 ) } × ( 1 ... ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) ≈ ( 1 ... ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) |
118 |
|
hasheni |
⊢ ( ( { ( 2 · 𝑢 ) } × ( 1 ... ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) ≈ ( 1 ... ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) → ( ♯ ‘ ( { ( 2 · 𝑢 ) } × ( 1 ... ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) ) = ( ♯ ‘ ( 1 ... ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) ) |
119 |
117 118
|
syl |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) → ( ♯ ‘ ( { ( 2 · 𝑢 ) } × ( 1 ... ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) ) = ( ♯ ‘ ( 1 ... ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) ) |
120 |
|
ssrab2 |
⊢ { 𝑧 ∈ 𝑆 ∣ ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) } ⊆ 𝑆 |
121 |
6
|
relopabiv |
⊢ Rel 𝑆 |
122 |
|
relss |
⊢ ( { 𝑧 ∈ 𝑆 ∣ ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) } ⊆ 𝑆 → ( Rel 𝑆 → Rel { 𝑧 ∈ 𝑆 ∣ ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) } ) ) |
123 |
120 121 122
|
mp2 |
⊢ Rel { 𝑧 ∈ 𝑆 ∣ ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) } |
124 |
|
relxp |
⊢ Rel ( { ( 2 · 𝑢 ) } × ( 1 ... ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) |
125 |
6
|
eleq2i |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ 𝑆 ↔ 〈 𝑥 , 𝑦 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ ( 1 ... 𝑀 ) ∧ 𝑦 ∈ ( 1 ... 𝑁 ) ) ∧ ( 𝑦 · 𝑃 ) < ( 𝑥 · 𝑄 ) ) } ) |
126 |
|
opabidw |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ ( 1 ... 𝑀 ) ∧ 𝑦 ∈ ( 1 ... 𝑁 ) ) ∧ ( 𝑦 · 𝑃 ) < ( 𝑥 · 𝑄 ) ) } ↔ ( ( 𝑥 ∈ ( 1 ... 𝑀 ) ∧ 𝑦 ∈ ( 1 ... 𝑁 ) ) ∧ ( 𝑦 · 𝑃 ) < ( 𝑥 · 𝑄 ) ) ) |
127 |
125 126
|
bitri |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ 𝑆 ↔ ( ( 𝑥 ∈ ( 1 ... 𝑀 ) ∧ 𝑦 ∈ ( 1 ... 𝑁 ) ) ∧ ( 𝑦 · 𝑃 ) < ( 𝑥 · 𝑄 ) ) ) |
128 |
|
anass |
⊢ ( ( ( 𝑦 ∈ ℕ ∧ 𝑦 ≤ 𝑁 ) ∧ ( 𝑦 · 𝑃 ) < ( 𝑄 · ( 2 · 𝑢 ) ) ) ↔ ( 𝑦 ∈ ℕ ∧ ( 𝑦 ≤ 𝑁 ∧ ( 𝑦 · 𝑃 ) < ( 𝑄 · ( 2 · 𝑢 ) ) ) ) ) |
129 |
114
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( 2 · 𝑢 ) ∈ ℕ ) |
130 |
129
|
nnred |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( 2 · 𝑢 ) ∈ ℝ ) |
131 |
58
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → 𝑃 ∈ ℕ ) |
132 |
131
|
nnred |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → 𝑃 ∈ ℝ ) |
133 |
132
|
rehalfcld |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( 𝑃 / 2 ) ∈ ℝ ) |
134 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) → 𝑀 ∈ ℝ ) |
135 |
134
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → 𝑀 ∈ ℝ ) |
136 |
|
elfzle2 |
⊢ ( 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) → 𝑢 ≤ ( ⌊ ‘ ( 𝑀 / 2 ) ) ) |
137 |
136
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) → 𝑢 ≤ ( ⌊ ‘ ( 𝑀 / 2 ) ) ) |
138 |
134
|
rehalfcld |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) → ( 𝑀 / 2 ) ∈ ℝ ) |
139 |
|
elfzelz |
⊢ ( 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) → 𝑢 ∈ ℤ ) |
140 |
139
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) → 𝑢 ∈ ℤ ) |
141 |
|
flge |
⊢ ( ( ( 𝑀 / 2 ) ∈ ℝ ∧ 𝑢 ∈ ℤ ) → ( 𝑢 ≤ ( 𝑀 / 2 ) ↔ 𝑢 ≤ ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) |
142 |
138 140 141
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) → ( 𝑢 ≤ ( 𝑀 / 2 ) ↔ 𝑢 ≤ ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) |
143 |
137 142
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) → 𝑢 ≤ ( 𝑀 / 2 ) ) |
144 |
|
elfznn |
⊢ ( 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) → 𝑢 ∈ ℕ ) |
145 |
144
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) → 𝑢 ∈ ℕ ) |
146 |
145
|
nnred |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) → 𝑢 ∈ ℝ ) |
147 |
|
2re |
⊢ 2 ∈ ℝ |
148 |
147
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) → 2 ∈ ℝ ) |
149 |
|
2pos |
⊢ 0 < 2 |
150 |
149
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) → 0 < 2 ) |
151 |
|
lemuldiv2 |
⊢ ( ( 𝑢 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ ( 2 ∈ ℝ ∧ 0 < 2 ) ) → ( ( 2 · 𝑢 ) ≤ 𝑀 ↔ 𝑢 ≤ ( 𝑀 / 2 ) ) ) |
152 |
146 134 148 150 151
|
syl112anc |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) → ( ( 2 · 𝑢 ) ≤ 𝑀 ↔ 𝑢 ≤ ( 𝑀 / 2 ) ) ) |
153 |
143 152
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) → ( 2 · 𝑢 ) ≤ 𝑀 ) |
154 |
153
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( 2 · 𝑢 ) ≤ 𝑀 ) |
155 |
132
|
ltm1d |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( 𝑃 − 1 ) < 𝑃 ) |
156 |
|
peano2rem |
⊢ ( 𝑃 ∈ ℝ → ( 𝑃 − 1 ) ∈ ℝ ) |
157 |
132 156
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( 𝑃 − 1 ) ∈ ℝ ) |
158 |
147
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → 2 ∈ ℝ ) |
159 |
149
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → 0 < 2 ) |
160 |
|
ltdiv1 |
⊢ ( ( ( 𝑃 − 1 ) ∈ ℝ ∧ 𝑃 ∈ ℝ ∧ ( 2 ∈ ℝ ∧ 0 < 2 ) ) → ( ( 𝑃 − 1 ) < 𝑃 ↔ ( ( 𝑃 − 1 ) / 2 ) < ( 𝑃 / 2 ) ) ) |
161 |
157 132 158 159 160
|
syl112anc |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( ( 𝑃 − 1 ) < 𝑃 ↔ ( ( 𝑃 − 1 ) / 2 ) < ( 𝑃 / 2 ) ) ) |
162 |
155 161
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( ( 𝑃 − 1 ) / 2 ) < ( 𝑃 / 2 ) ) |
163 |
4 162
|
eqbrtrid |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → 𝑀 < ( 𝑃 / 2 ) ) |
164 |
130 135 133 154 163
|
lelttrd |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( 2 · 𝑢 ) < ( 𝑃 / 2 ) ) |
165 |
131
|
nnrpd |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → 𝑃 ∈ ℝ+ ) |
166 |
|
rphalflt |
⊢ ( 𝑃 ∈ ℝ+ → ( 𝑃 / 2 ) < 𝑃 ) |
167 |
165 166
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( 𝑃 / 2 ) < 𝑃 ) |
168 |
130 133 132 164 167
|
lttrd |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( 2 · 𝑢 ) < 𝑃 ) |
169 |
130 132
|
ltnled |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( ( 2 · 𝑢 ) < 𝑃 ↔ ¬ 𝑃 ≤ ( 2 · 𝑢 ) ) ) |
170 |
168 169
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ¬ 𝑃 ≤ ( 2 · 𝑢 ) ) |
171 |
1
|
eldifad |
⊢ ( 𝜑 → 𝑃 ∈ ℙ ) |
172 |
171
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → 𝑃 ∈ ℙ ) |
173 |
|
prmz |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℤ ) |
174 |
172 173
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → 𝑃 ∈ ℤ ) |
175 |
|
dvdsle |
⊢ ( ( 𝑃 ∈ ℤ ∧ ( 2 · 𝑢 ) ∈ ℕ ) → ( 𝑃 ∥ ( 2 · 𝑢 ) → 𝑃 ≤ ( 2 · 𝑢 ) ) ) |
176 |
174 129 175
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( 𝑃 ∥ ( 2 · 𝑢 ) → 𝑃 ≤ ( 2 · 𝑢 ) ) ) |
177 |
170 176
|
mtod |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ¬ 𝑃 ∥ ( 2 · 𝑢 ) ) |
178 |
2
|
eldifad |
⊢ ( 𝜑 → 𝑄 ∈ ℙ ) |
179 |
|
prmrp |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ) → ( ( 𝑃 gcd 𝑄 ) = 1 ↔ 𝑃 ≠ 𝑄 ) ) |
180 |
171 178 179
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑃 gcd 𝑄 ) = 1 ↔ 𝑃 ≠ 𝑄 ) ) |
181 |
3 180
|
mpbird |
⊢ ( 𝜑 → ( 𝑃 gcd 𝑄 ) = 1 ) |
182 |
181
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( 𝑃 gcd 𝑄 ) = 1 ) |
183 |
178
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → 𝑄 ∈ ℙ ) |
184 |
|
prmz |
⊢ ( 𝑄 ∈ ℙ → 𝑄 ∈ ℤ ) |
185 |
183 184
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → 𝑄 ∈ ℤ ) |
186 |
129
|
nnzd |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( 2 · 𝑢 ) ∈ ℤ ) |
187 |
|
coprmdvds |
⊢ ( ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℤ ∧ ( 2 · 𝑢 ) ∈ ℤ ) → ( ( 𝑃 ∥ ( 𝑄 · ( 2 · 𝑢 ) ) ∧ ( 𝑃 gcd 𝑄 ) = 1 ) → 𝑃 ∥ ( 2 · 𝑢 ) ) ) |
188 |
174 185 186 187
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( ( 𝑃 ∥ ( 𝑄 · ( 2 · 𝑢 ) ) ∧ ( 𝑃 gcd 𝑄 ) = 1 ) → 𝑃 ∥ ( 2 · 𝑢 ) ) ) |
189 |
182 188
|
mpan2d |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( 𝑃 ∥ ( 𝑄 · ( 2 · 𝑢 ) ) → 𝑃 ∥ ( 2 · 𝑢 ) ) ) |
190 |
177 189
|
mtod |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ¬ 𝑃 ∥ ( 𝑄 · ( 2 · 𝑢 ) ) ) |
191 |
|
nnz |
⊢ ( 𝑦 ∈ ℕ → 𝑦 ∈ ℤ ) |
192 |
191
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → 𝑦 ∈ ℤ ) |
193 |
|
dvdsmul2 |
⊢ ( ( 𝑦 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → 𝑃 ∥ ( 𝑦 · 𝑃 ) ) |
194 |
192 174 193
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → 𝑃 ∥ ( 𝑦 · 𝑃 ) ) |
195 |
|
breq2 |
⊢ ( ( 𝑄 · ( 2 · 𝑢 ) ) = ( 𝑦 · 𝑃 ) → ( 𝑃 ∥ ( 𝑄 · ( 2 · 𝑢 ) ) ↔ 𝑃 ∥ ( 𝑦 · 𝑃 ) ) ) |
196 |
194 195
|
syl5ibrcom |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( ( 𝑄 · ( 2 · 𝑢 ) ) = ( 𝑦 · 𝑃 ) → 𝑃 ∥ ( 𝑄 · ( 2 · 𝑢 ) ) ) ) |
197 |
196
|
necon3bd |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( ¬ 𝑃 ∥ ( 𝑄 · ( 2 · 𝑢 ) ) → ( 𝑄 · ( 2 · 𝑢 ) ) ≠ ( 𝑦 · 𝑃 ) ) ) |
198 |
190 197
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( 𝑄 · ( 2 · 𝑢 ) ) ≠ ( 𝑦 · 𝑃 ) ) |
199 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → 𝑦 ∈ ℕ ) |
200 |
199 131
|
nnmulcld |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( 𝑦 · 𝑃 ) ∈ ℕ ) |
201 |
200
|
nnred |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( 𝑦 · 𝑃 ) ∈ ℝ ) |
202 |
56
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) → 𝑄 ∈ ℕ ) |
203 |
202 114
|
nnmulcld |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) → ( 𝑄 · ( 2 · 𝑢 ) ) ∈ ℕ ) |
204 |
203
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( 𝑄 · ( 2 · 𝑢 ) ) ∈ ℕ ) |
205 |
204
|
nnred |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( 𝑄 · ( 2 · 𝑢 ) ) ∈ ℝ ) |
206 |
201 205
|
ltlend |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( ( 𝑦 · 𝑃 ) < ( 𝑄 · ( 2 · 𝑢 ) ) ↔ ( ( 𝑦 · 𝑃 ) ≤ ( 𝑄 · ( 2 · 𝑢 ) ) ∧ ( 𝑄 · ( 2 · 𝑢 ) ) ≠ ( 𝑦 · 𝑃 ) ) ) ) |
207 |
198 206
|
mpbiran2d |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( ( 𝑦 · 𝑃 ) < ( 𝑄 · ( 2 · 𝑢 ) ) ↔ ( 𝑦 · 𝑃 ) ≤ ( 𝑄 · ( 2 · 𝑢 ) ) ) ) |
208 |
|
nnre |
⊢ ( 𝑦 ∈ ℕ → 𝑦 ∈ ℝ ) |
209 |
208
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → 𝑦 ∈ ℝ ) |
210 |
131
|
nngt0d |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → 0 < 𝑃 ) |
211 |
|
lemuldiv |
⊢ ( ( 𝑦 ∈ ℝ ∧ ( 𝑄 · ( 2 · 𝑢 ) ) ∈ ℝ ∧ ( 𝑃 ∈ ℝ ∧ 0 < 𝑃 ) ) → ( ( 𝑦 · 𝑃 ) ≤ ( 𝑄 · ( 2 · 𝑢 ) ) ↔ 𝑦 ≤ ( ( 𝑄 · ( 2 · 𝑢 ) ) / 𝑃 ) ) ) |
212 |
209 205 132 210 211
|
syl112anc |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( ( 𝑦 · 𝑃 ) ≤ ( 𝑄 · ( 2 · 𝑢 ) ) ↔ 𝑦 ≤ ( ( 𝑄 · ( 2 · 𝑢 ) ) / 𝑃 ) ) ) |
213 |
202
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → 𝑄 ∈ ℕ ) |
214 |
213
|
nncnd |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → 𝑄 ∈ ℂ ) |
215 |
129
|
nncnd |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( 2 · 𝑢 ) ∈ ℂ ) |
216 |
131
|
nncnd |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → 𝑃 ∈ ℂ ) |
217 |
131
|
nnne0d |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → 𝑃 ≠ 0 ) |
218 |
214 215 216 217
|
div23d |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( ( 𝑄 · ( 2 · 𝑢 ) ) / 𝑃 ) = ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) |
219 |
218
|
breq2d |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( 𝑦 ≤ ( ( 𝑄 · ( 2 · 𝑢 ) ) / 𝑃 ) ↔ 𝑦 ≤ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) |
220 |
207 212 219
|
3bitrd |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( ( 𝑦 · 𝑃 ) < ( 𝑄 · ( 2 · 𝑢 ) ) ↔ 𝑦 ≤ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) |
221 |
213
|
nnred |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → 𝑄 ∈ ℝ ) |
222 |
213
|
nngt0d |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → 0 < 𝑄 ) |
223 |
|
ltmul2 |
⊢ ( ( ( 2 · 𝑢 ) ∈ ℝ ∧ ( 𝑃 / 2 ) ∈ ℝ ∧ ( 𝑄 ∈ ℝ ∧ 0 < 𝑄 ) ) → ( ( 2 · 𝑢 ) < ( 𝑃 / 2 ) ↔ ( 𝑄 · ( 2 · 𝑢 ) ) < ( 𝑄 · ( 𝑃 / 2 ) ) ) ) |
224 |
130 133 221 222 223
|
syl112anc |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( ( 2 · 𝑢 ) < ( 𝑃 / 2 ) ↔ ( 𝑄 · ( 2 · 𝑢 ) ) < ( 𝑄 · ( 𝑃 / 2 ) ) ) ) |
225 |
164 224
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( 𝑄 · ( 2 · 𝑢 ) ) < ( 𝑄 · ( 𝑃 / 2 ) ) ) |
226 |
|
2cnd |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → 2 ∈ ℂ ) |
227 |
|
2ne0 |
⊢ 2 ≠ 0 |
228 |
227
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → 2 ≠ 0 ) |
229 |
|
divass |
⊢ ( ( 𝑄 ∈ ℂ ∧ 𝑃 ∈ ℂ ∧ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ) → ( ( 𝑄 · 𝑃 ) / 2 ) = ( 𝑄 · ( 𝑃 / 2 ) ) ) |
230 |
|
div23 |
⊢ ( ( 𝑄 ∈ ℂ ∧ 𝑃 ∈ ℂ ∧ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ) → ( ( 𝑄 · 𝑃 ) / 2 ) = ( ( 𝑄 / 2 ) · 𝑃 ) ) |
231 |
229 230
|
eqtr3d |
⊢ ( ( 𝑄 ∈ ℂ ∧ 𝑃 ∈ ℂ ∧ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ) → ( 𝑄 · ( 𝑃 / 2 ) ) = ( ( 𝑄 / 2 ) · 𝑃 ) ) |
232 |
214 216 226 228 231
|
syl112anc |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( 𝑄 · ( 𝑃 / 2 ) ) = ( ( 𝑄 / 2 ) · 𝑃 ) ) |
233 |
225 232
|
breqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( 𝑄 · ( 2 · 𝑢 ) ) < ( ( 𝑄 / 2 ) · 𝑃 ) ) |
234 |
221
|
rehalfcld |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( 𝑄 / 2 ) ∈ ℝ ) |
235 |
234 132
|
remulcld |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( ( 𝑄 / 2 ) · 𝑃 ) ∈ ℝ ) |
236 |
|
lttr |
⊢ ( ( ( 𝑦 · 𝑃 ) ∈ ℝ ∧ ( 𝑄 · ( 2 · 𝑢 ) ) ∈ ℝ ∧ ( ( 𝑄 / 2 ) · 𝑃 ) ∈ ℝ ) → ( ( ( 𝑦 · 𝑃 ) < ( 𝑄 · ( 2 · 𝑢 ) ) ∧ ( 𝑄 · ( 2 · 𝑢 ) ) < ( ( 𝑄 / 2 ) · 𝑃 ) ) → ( 𝑦 · 𝑃 ) < ( ( 𝑄 / 2 ) · 𝑃 ) ) ) |
237 |
201 205 235 236
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( ( ( 𝑦 · 𝑃 ) < ( 𝑄 · ( 2 · 𝑢 ) ) ∧ ( 𝑄 · ( 2 · 𝑢 ) ) < ( ( 𝑄 / 2 ) · 𝑃 ) ) → ( 𝑦 · 𝑃 ) < ( ( 𝑄 / 2 ) · 𝑃 ) ) ) |
238 |
233 237
|
mpan2d |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( ( 𝑦 · 𝑃 ) < ( 𝑄 · ( 2 · 𝑢 ) ) → ( 𝑦 · 𝑃 ) < ( ( 𝑄 / 2 ) · 𝑃 ) ) ) |
239 |
|
ltmul1 |
⊢ ( ( 𝑦 ∈ ℝ ∧ ( 𝑄 / 2 ) ∈ ℝ ∧ ( 𝑃 ∈ ℝ ∧ 0 < 𝑃 ) ) → ( 𝑦 < ( 𝑄 / 2 ) ↔ ( 𝑦 · 𝑃 ) < ( ( 𝑄 / 2 ) · 𝑃 ) ) ) |
240 |
209 234 132 210 239
|
syl112anc |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( 𝑦 < ( 𝑄 / 2 ) ↔ ( 𝑦 · 𝑃 ) < ( ( 𝑄 / 2 ) · 𝑃 ) ) ) |
241 |
238 240
|
sylibrd |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( ( 𝑦 · 𝑃 ) < ( 𝑄 · ( 2 · 𝑢 ) ) → 𝑦 < ( 𝑄 / 2 ) ) ) |
242 |
|
peano2rem |
⊢ ( 𝑄 ∈ ℝ → ( 𝑄 − 1 ) ∈ ℝ ) |
243 |
221 242
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( 𝑄 − 1 ) ∈ ℝ ) |
244 |
243
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( 𝑄 − 1 ) ∈ ℂ ) |
245 |
214 244 226 228
|
divsubdird |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( ( 𝑄 − ( 𝑄 − 1 ) ) / 2 ) = ( ( 𝑄 / 2 ) − ( ( 𝑄 − 1 ) / 2 ) ) ) |
246 |
5
|
oveq2i |
⊢ ( ( 𝑄 / 2 ) − 𝑁 ) = ( ( 𝑄 / 2 ) − ( ( 𝑄 − 1 ) / 2 ) ) |
247 |
245 246
|
eqtr4di |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( ( 𝑄 − ( 𝑄 − 1 ) ) / 2 ) = ( ( 𝑄 / 2 ) − 𝑁 ) ) |
248 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
249 |
|
nncan |
⊢ ( ( 𝑄 ∈ ℂ ∧ 1 ∈ ℂ ) → ( 𝑄 − ( 𝑄 − 1 ) ) = 1 ) |
250 |
214 248 249
|
sylancl |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( 𝑄 − ( 𝑄 − 1 ) ) = 1 ) |
251 |
250
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( ( 𝑄 − ( 𝑄 − 1 ) ) / 2 ) = ( 1 / 2 ) ) |
252 |
|
halflt1 |
⊢ ( 1 / 2 ) < 1 |
253 |
251 252
|
eqbrtrdi |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( ( 𝑄 − ( 𝑄 − 1 ) ) / 2 ) < 1 ) |
254 |
247 253
|
eqbrtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( ( 𝑄 / 2 ) − 𝑁 ) < 1 ) |
255 |
2 5
|
gausslemma2dlem0b |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
256 |
255
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → 𝑁 ∈ ℕ ) |
257 |
256
|
nnred |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → 𝑁 ∈ ℝ ) |
258 |
|
1red |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → 1 ∈ ℝ ) |
259 |
234 257 258
|
ltsubadd2d |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( ( ( 𝑄 / 2 ) − 𝑁 ) < 1 ↔ ( 𝑄 / 2 ) < ( 𝑁 + 1 ) ) ) |
260 |
254 259
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( 𝑄 / 2 ) < ( 𝑁 + 1 ) ) |
261 |
|
peano2re |
⊢ ( 𝑁 ∈ ℝ → ( 𝑁 + 1 ) ∈ ℝ ) |
262 |
257 261
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( 𝑁 + 1 ) ∈ ℝ ) |
263 |
|
lttr |
⊢ ( ( 𝑦 ∈ ℝ ∧ ( 𝑄 / 2 ) ∈ ℝ ∧ ( 𝑁 + 1 ) ∈ ℝ ) → ( ( 𝑦 < ( 𝑄 / 2 ) ∧ ( 𝑄 / 2 ) < ( 𝑁 + 1 ) ) → 𝑦 < ( 𝑁 + 1 ) ) ) |
264 |
209 234 262 263
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( ( 𝑦 < ( 𝑄 / 2 ) ∧ ( 𝑄 / 2 ) < ( 𝑁 + 1 ) ) → 𝑦 < ( 𝑁 + 1 ) ) ) |
265 |
260 264
|
mpan2d |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( 𝑦 < ( 𝑄 / 2 ) → 𝑦 < ( 𝑁 + 1 ) ) ) |
266 |
241 265
|
syld |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( ( 𝑦 · 𝑃 ) < ( 𝑄 · ( 2 · 𝑢 ) ) → 𝑦 < ( 𝑁 + 1 ) ) ) |
267 |
|
nnleltp1 |
⊢ ( ( 𝑦 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑦 ≤ 𝑁 ↔ 𝑦 < ( 𝑁 + 1 ) ) ) |
268 |
199 256 267
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( 𝑦 ≤ 𝑁 ↔ 𝑦 < ( 𝑁 + 1 ) ) ) |
269 |
266 268
|
sylibrd |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( ( 𝑦 · 𝑃 ) < ( 𝑄 · ( 2 · 𝑢 ) ) → 𝑦 ≤ 𝑁 ) ) |
270 |
269
|
pm4.71rd |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( ( 𝑦 · 𝑃 ) < ( 𝑄 · ( 2 · 𝑢 ) ) ↔ ( 𝑦 ≤ 𝑁 ∧ ( 𝑦 · 𝑃 ) < ( 𝑄 · ( 2 · 𝑢 ) ) ) ) ) |
271 |
92 67
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) → ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ∈ ℝ ) |
272 |
|
flge |
⊢ ( ( ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ∈ ℝ ∧ 𝑦 ∈ ℤ ) → ( 𝑦 ≤ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ↔ 𝑦 ≤ ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) |
273 |
271 191 272
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( 𝑦 ≤ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ↔ 𝑦 ≤ ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) |
274 |
220 270 273
|
3bitr3d |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( ( 𝑦 ≤ 𝑁 ∧ ( 𝑦 · 𝑃 ) < ( 𝑄 · ( 2 · 𝑢 ) ) ) ↔ 𝑦 ≤ ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) |
275 |
274
|
pm5.32da |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) → ( ( 𝑦 ∈ ℕ ∧ ( 𝑦 ≤ 𝑁 ∧ ( 𝑦 · 𝑃 ) < ( 𝑄 · ( 2 · 𝑢 ) ) ) ) ↔ ( 𝑦 ∈ ℕ ∧ 𝑦 ≤ ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) ) |
276 |
128 275
|
syl5bb |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) → ( ( ( 𝑦 ∈ ℕ ∧ 𝑦 ≤ 𝑁 ) ∧ ( 𝑦 · 𝑃 ) < ( 𝑄 · ( 2 · 𝑢 ) ) ) ↔ ( 𝑦 ∈ ℕ ∧ 𝑦 ≤ ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) ) |
277 |
276
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑥 = ( 2 · 𝑢 ) ) → ( ( ( 𝑦 ∈ ℕ ∧ 𝑦 ≤ 𝑁 ) ∧ ( 𝑦 · 𝑃 ) < ( 𝑄 · ( 2 · 𝑢 ) ) ) ↔ ( 𝑦 ∈ ℕ ∧ 𝑦 ≤ ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) ) |
278 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑥 = ( 2 · 𝑢 ) ) → 𝑥 = ( 2 · 𝑢 ) ) |
279 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
280 |
114 279
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) → ( 2 · 𝑢 ) ∈ ( ℤ≥ ‘ 1 ) ) |
281 |
26
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) → 𝑀 ∈ ℤ ) |
282 |
|
elfz5 |
⊢ ( ( ( 2 · 𝑢 ) ∈ ( ℤ≥ ‘ 1 ) ∧ 𝑀 ∈ ℤ ) → ( ( 2 · 𝑢 ) ∈ ( 1 ... 𝑀 ) ↔ ( 2 · 𝑢 ) ≤ 𝑀 ) ) |
283 |
280 281 282
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) → ( ( 2 · 𝑢 ) ∈ ( 1 ... 𝑀 ) ↔ ( 2 · 𝑢 ) ≤ 𝑀 ) ) |
284 |
153 283
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) → ( 2 · 𝑢 ) ∈ ( 1 ... 𝑀 ) ) |
285 |
284
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑥 = ( 2 · 𝑢 ) ) → ( 2 · 𝑢 ) ∈ ( 1 ... 𝑀 ) ) |
286 |
278 285
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑥 = ( 2 · 𝑢 ) ) → 𝑥 ∈ ( 1 ... 𝑀 ) ) |
287 |
286
|
biantrurd |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑥 = ( 2 · 𝑢 ) ) → ( 𝑦 ∈ ( 1 ... 𝑁 ) ↔ ( 𝑥 ∈ ( 1 ... 𝑀 ) ∧ 𝑦 ∈ ( 1 ... 𝑁 ) ) ) ) |
288 |
255
|
nnzd |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
289 |
288
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑥 = ( 2 · 𝑢 ) ) → 𝑁 ∈ ℤ ) |
290 |
|
fznn |
⊢ ( 𝑁 ∈ ℤ → ( 𝑦 ∈ ( 1 ... 𝑁 ) ↔ ( 𝑦 ∈ ℕ ∧ 𝑦 ≤ 𝑁 ) ) ) |
291 |
289 290
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑥 = ( 2 · 𝑢 ) ) → ( 𝑦 ∈ ( 1 ... 𝑁 ) ↔ ( 𝑦 ∈ ℕ ∧ 𝑦 ≤ 𝑁 ) ) ) |
292 |
287 291
|
bitr3d |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑥 = ( 2 · 𝑢 ) ) → ( ( 𝑥 ∈ ( 1 ... 𝑀 ) ∧ 𝑦 ∈ ( 1 ... 𝑁 ) ) ↔ ( 𝑦 ∈ ℕ ∧ 𝑦 ≤ 𝑁 ) ) ) |
293 |
|
oveq1 |
⊢ ( 𝑥 = ( 2 · 𝑢 ) → ( 𝑥 · 𝑄 ) = ( ( 2 · 𝑢 ) · 𝑄 ) ) |
294 |
114
|
nncnd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) → ( 2 · 𝑢 ) ∈ ℂ ) |
295 |
202
|
nncnd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) → 𝑄 ∈ ℂ ) |
296 |
294 295
|
mulcomd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) → ( ( 2 · 𝑢 ) · 𝑄 ) = ( 𝑄 · ( 2 · 𝑢 ) ) ) |
297 |
293 296
|
sylan9eqr |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑥 = ( 2 · 𝑢 ) ) → ( 𝑥 · 𝑄 ) = ( 𝑄 · ( 2 · 𝑢 ) ) ) |
298 |
297
|
breq2d |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑥 = ( 2 · 𝑢 ) ) → ( ( 𝑦 · 𝑃 ) < ( 𝑥 · 𝑄 ) ↔ ( 𝑦 · 𝑃 ) < ( 𝑄 · ( 2 · 𝑢 ) ) ) ) |
299 |
292 298
|
anbi12d |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑥 = ( 2 · 𝑢 ) ) → ( ( ( 𝑥 ∈ ( 1 ... 𝑀 ) ∧ 𝑦 ∈ ( 1 ... 𝑁 ) ) ∧ ( 𝑦 · 𝑃 ) < ( 𝑥 · 𝑄 ) ) ↔ ( ( 𝑦 ∈ ℕ ∧ 𝑦 ≤ 𝑁 ) ∧ ( 𝑦 · 𝑃 ) < ( 𝑄 · ( 2 · 𝑢 ) ) ) ) ) |
300 |
271
|
flcld |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) → ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ∈ ℤ ) |
301 |
|
fznn |
⊢ ( ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ∈ ℤ → ( 𝑦 ∈ ( 1 ... ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ↔ ( 𝑦 ∈ ℕ ∧ 𝑦 ≤ ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) ) |
302 |
300 301
|
syl |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) → ( 𝑦 ∈ ( 1 ... ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ↔ ( 𝑦 ∈ ℕ ∧ 𝑦 ≤ ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) ) |
303 |
302
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑥 = ( 2 · 𝑢 ) ) → ( 𝑦 ∈ ( 1 ... ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ↔ ( 𝑦 ∈ ℕ ∧ 𝑦 ≤ ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) ) |
304 |
277 299 303
|
3bitr4d |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑥 = ( 2 · 𝑢 ) ) → ( ( ( 𝑥 ∈ ( 1 ... 𝑀 ) ∧ 𝑦 ∈ ( 1 ... 𝑁 ) ) ∧ ( 𝑦 · 𝑃 ) < ( 𝑥 · 𝑄 ) ) ↔ 𝑦 ∈ ( 1 ... ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) ) |
305 |
127 304
|
syl5bb |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑥 = ( 2 · 𝑢 ) ) → ( 〈 𝑥 , 𝑦 〉 ∈ 𝑆 ↔ 𝑦 ∈ ( 1 ... ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) ) |
306 |
305
|
pm5.32da |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) → ( ( 𝑥 = ( 2 · 𝑢 ) ∧ 〈 𝑥 , 𝑦 〉 ∈ 𝑆 ) ↔ ( 𝑥 = ( 2 · 𝑢 ) ∧ 𝑦 ∈ ( 1 ... ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) ) ) |
307 |
|
vex |
⊢ 𝑥 ∈ V |
308 |
|
vex |
⊢ 𝑦 ∈ V |
309 |
307 308
|
op1std |
⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( 1st ‘ 𝑧 ) = 𝑥 ) |
310 |
309
|
eqeq2d |
⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) ↔ ( 2 · 𝑢 ) = 𝑥 ) ) |
311 |
|
eqcom |
⊢ ( ( 2 · 𝑢 ) = 𝑥 ↔ 𝑥 = ( 2 · 𝑢 ) ) |
312 |
310 311
|
bitrdi |
⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) ↔ 𝑥 = ( 2 · 𝑢 ) ) ) |
313 |
312
|
elrab |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ { 𝑧 ∈ 𝑆 ∣ ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) } ↔ ( 〈 𝑥 , 𝑦 〉 ∈ 𝑆 ∧ 𝑥 = ( 2 · 𝑢 ) ) ) |
314 |
313
|
biancomi |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ { 𝑧 ∈ 𝑆 ∣ ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) } ↔ ( 𝑥 = ( 2 · 𝑢 ) ∧ 〈 𝑥 , 𝑦 〉 ∈ 𝑆 ) ) |
315 |
|
opelxp |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( { ( 2 · 𝑢 ) } × ( 1 ... ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) ↔ ( 𝑥 ∈ { ( 2 · 𝑢 ) } ∧ 𝑦 ∈ ( 1 ... ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) ) |
316 |
|
velsn |
⊢ ( 𝑥 ∈ { ( 2 · 𝑢 ) } ↔ 𝑥 = ( 2 · 𝑢 ) ) |
317 |
316
|
anbi1i |
⊢ ( ( 𝑥 ∈ { ( 2 · 𝑢 ) } ∧ 𝑦 ∈ ( 1 ... ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) ↔ ( 𝑥 = ( 2 · 𝑢 ) ∧ 𝑦 ∈ ( 1 ... ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) ) |
318 |
315 317
|
bitri |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( { ( 2 · 𝑢 ) } × ( 1 ... ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) ↔ ( 𝑥 = ( 2 · 𝑢 ) ∧ 𝑦 ∈ ( 1 ... ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) ) |
319 |
306 314 318
|
3bitr4g |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) → ( 〈 𝑥 , 𝑦 〉 ∈ { 𝑧 ∈ 𝑆 ∣ ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) } ↔ 〈 𝑥 , 𝑦 〉 ∈ ( { ( 2 · 𝑢 ) } × ( 1 ... ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) ) ) |
320 |
123 124 319
|
eqrelrdv |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) → { 𝑧 ∈ 𝑆 ∣ ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) } = ( { ( 2 · 𝑢 ) } × ( 1 ... ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) ) |
321 |
320
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) → ( { ( 2 · 𝑢 ) } × ( 1 ... ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) = { 𝑧 ∈ 𝑆 ∣ ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) } ) |
322 |
321
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) → ( ♯ ‘ ( { ( 2 · 𝑢 ) } × ( 1 ... ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) ) = ( ♯ ‘ { 𝑧 ∈ 𝑆 ∣ ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) } ) ) |
323 |
|
hashfz1 |
⊢ ( ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ∈ ℕ0 → ( ♯ ‘ ( 1 ... ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) = ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) |
324 |
93 323
|
syl |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) → ( ♯ ‘ ( 1 ... ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) = ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) |
325 |
119 322 324
|
3eqtr3rd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) → ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) = ( ♯ ‘ { 𝑧 ∈ 𝑆 ∣ ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) } ) ) |
326 |
325
|
sumeq2dv |
⊢ ( 𝜑 → Σ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) = Σ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ( ♯ ‘ { 𝑧 ∈ 𝑆 ∣ ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) } ) ) |
327 |
102
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) → 𝑆 ∈ Fin ) |
328 |
|
ssfi |
⊢ ( ( 𝑆 ∈ Fin ∧ { 𝑧 ∈ 𝑆 ∣ ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) } ⊆ 𝑆 ) → { 𝑧 ∈ 𝑆 ∣ ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) } ∈ Fin ) |
329 |
327 120 328
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) → { 𝑧 ∈ 𝑆 ∣ ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) } ∈ Fin ) |
330 |
|
fveq2 |
⊢ ( 𝑧 = 𝑣 → ( 1st ‘ 𝑧 ) = ( 1st ‘ 𝑣 ) ) |
331 |
330
|
eqeq2d |
⊢ ( 𝑧 = 𝑣 → ( ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) ↔ ( 2 · 𝑢 ) = ( 1st ‘ 𝑣 ) ) ) |
332 |
331
|
elrab |
⊢ ( 𝑣 ∈ { 𝑧 ∈ 𝑆 ∣ ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) } ↔ ( 𝑣 ∈ 𝑆 ∧ ( 2 · 𝑢 ) = ( 1st ‘ 𝑣 ) ) ) |
333 |
332
|
simprbi |
⊢ ( 𝑣 ∈ { 𝑧 ∈ 𝑆 ∣ ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) } → ( 2 · 𝑢 ) = ( 1st ‘ 𝑣 ) ) |
334 |
333
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ∧ 𝑣 ∈ { 𝑧 ∈ 𝑆 ∣ ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) } ) ) → ( 2 · 𝑢 ) = ( 1st ‘ 𝑣 ) ) |
335 |
334
|
oveq1d |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ∧ 𝑣 ∈ { 𝑧 ∈ 𝑆 ∣ ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) } ) ) → ( ( 2 · 𝑢 ) / 2 ) = ( ( 1st ‘ 𝑣 ) / 2 ) ) |
336 |
145
|
nncnd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) → 𝑢 ∈ ℂ ) |
337 |
336
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ∧ 𝑣 ∈ { 𝑧 ∈ 𝑆 ∣ ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) } ) ) → 𝑢 ∈ ℂ ) |
338 |
|
2cnd |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ∧ 𝑣 ∈ { 𝑧 ∈ 𝑆 ∣ ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) } ) ) → 2 ∈ ℂ ) |
339 |
227
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ∧ 𝑣 ∈ { 𝑧 ∈ 𝑆 ∣ ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) } ) ) → 2 ≠ 0 ) |
340 |
337 338 339
|
divcan3d |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ∧ 𝑣 ∈ { 𝑧 ∈ 𝑆 ∣ ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) } ) ) → ( ( 2 · 𝑢 ) / 2 ) = 𝑢 ) |
341 |
335 340
|
eqtr3d |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ∧ 𝑣 ∈ { 𝑧 ∈ 𝑆 ∣ ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) } ) ) → ( ( 1st ‘ 𝑣 ) / 2 ) = 𝑢 ) |
342 |
341
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ∀ 𝑣 ∈ { 𝑧 ∈ 𝑆 ∣ ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) } ( ( 1st ‘ 𝑣 ) / 2 ) = 𝑢 ) |
343 |
|
invdisj |
⊢ ( ∀ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ∀ 𝑣 ∈ { 𝑧 ∈ 𝑆 ∣ ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) } ( ( 1st ‘ 𝑣 ) / 2 ) = 𝑢 → Disj 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) { 𝑧 ∈ 𝑆 ∣ ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) } ) |
344 |
342 343
|
syl |
⊢ ( 𝜑 → Disj 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) { 𝑧 ∈ 𝑆 ∣ ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) } ) |
345 |
89 329 344
|
hashiun |
⊢ ( 𝜑 → ( ♯ ‘ ∪ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) { 𝑧 ∈ 𝑆 ∣ ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) } ) = Σ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ( ♯ ‘ { 𝑧 ∈ 𝑆 ∣ ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) } ) ) |
346 |
|
iunrab |
⊢ ∪ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) { 𝑧 ∈ 𝑆 ∣ ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) } = { 𝑧 ∈ 𝑆 ∣ ∃ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) } |
347 |
|
2cn |
⊢ 2 ∈ ℂ |
348 |
|
zcn |
⊢ ( 𝑢 ∈ ℤ → 𝑢 ∈ ℂ ) |
349 |
348
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ 𝑢 ∈ ℤ ) → 𝑢 ∈ ℂ ) |
350 |
|
mulcom |
⊢ ( ( 2 ∈ ℂ ∧ 𝑢 ∈ ℂ ) → ( 2 · 𝑢 ) = ( 𝑢 · 2 ) ) |
351 |
347 349 350
|
sylancr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ 𝑢 ∈ ℤ ) → ( 2 · 𝑢 ) = ( 𝑢 · 2 ) ) |
352 |
351
|
eqeq1d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ 𝑢 ∈ ℤ ) → ( ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) ↔ ( 𝑢 · 2 ) = ( 1st ‘ 𝑧 ) ) ) |
353 |
352
|
rexbidva |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) → ( ∃ 𝑢 ∈ ℤ ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) ↔ ∃ 𝑢 ∈ ℤ ( 𝑢 · 2 ) = ( 1st ‘ 𝑧 ) ) ) |
354 |
139
|
anim1i |
⊢ ( ( 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ∧ ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) ) → ( 𝑢 ∈ ℤ ∧ ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) ) ) |
355 |
354
|
reximi2 |
⊢ ( ∃ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) → ∃ 𝑢 ∈ ℤ ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) ) |
356 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑢 ∈ ℤ ∧ ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) ) ) → ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) ) |
357 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) → 𝑧 ∈ 𝑆 ) |
358 |
100 357
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) → 𝑧 ∈ ( ( 1 ... 𝑀 ) × ( 1 ... 𝑁 ) ) ) |
359 |
|
xp1st |
⊢ ( 𝑧 ∈ ( ( 1 ... 𝑀 ) × ( 1 ... 𝑁 ) ) → ( 1st ‘ 𝑧 ) ∈ ( 1 ... 𝑀 ) ) |
360 |
358 359
|
syl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) → ( 1st ‘ 𝑧 ) ∈ ( 1 ... 𝑀 ) ) |
361 |
360
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑢 ∈ ℤ ∧ ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) ) ) → ( 1st ‘ 𝑧 ) ∈ ( 1 ... 𝑀 ) ) |
362 |
|
elfzle2 |
⊢ ( ( 1st ‘ 𝑧 ) ∈ ( 1 ... 𝑀 ) → ( 1st ‘ 𝑧 ) ≤ 𝑀 ) |
363 |
361 362
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑢 ∈ ℤ ∧ ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) ) ) → ( 1st ‘ 𝑧 ) ≤ 𝑀 ) |
364 |
356 363
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑢 ∈ ℤ ∧ ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) ) ) → ( 2 · 𝑢 ) ≤ 𝑀 ) |
365 |
|
zre |
⊢ ( 𝑢 ∈ ℤ → 𝑢 ∈ ℝ ) |
366 |
365
|
ad2antrl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑢 ∈ ℤ ∧ ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) ) ) → 𝑢 ∈ ℝ ) |
367 |
11
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑢 ∈ ℤ ∧ ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) ) ) → 𝑀 ∈ ℝ ) |
368 |
147
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑢 ∈ ℤ ∧ ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) ) ) → 2 ∈ ℝ ) |
369 |
149
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑢 ∈ ℤ ∧ ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) ) ) → 0 < 2 ) |
370 |
366 367 368 369 151
|
syl112anc |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑢 ∈ ℤ ∧ ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) ) ) → ( ( 2 · 𝑢 ) ≤ 𝑀 ↔ 𝑢 ≤ ( 𝑀 / 2 ) ) ) |
371 |
364 370
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑢 ∈ ℤ ∧ ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) ) ) → 𝑢 ≤ ( 𝑀 / 2 ) ) |
372 |
12
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑢 ∈ ℤ ∧ ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) ) ) → ( 𝑀 / 2 ) ∈ ℝ ) |
373 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑢 ∈ ℤ ∧ ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) ) ) → 𝑢 ∈ ℤ ) |
374 |
372 373 141
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑢 ∈ ℤ ∧ ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) ) ) → ( 𝑢 ≤ ( 𝑀 / 2 ) ↔ 𝑢 ≤ ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) |
375 |
371 374
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑢 ∈ ℤ ∧ ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) ) ) → 𝑢 ≤ ( ⌊ ‘ ( 𝑀 / 2 ) ) ) |
376 |
|
2t0e0 |
⊢ ( 2 · 0 ) = 0 |
377 |
|
elfznn |
⊢ ( ( 1st ‘ 𝑧 ) ∈ ( 1 ... 𝑀 ) → ( 1st ‘ 𝑧 ) ∈ ℕ ) |
378 |
361 377
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑢 ∈ ℤ ∧ ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) ) ) → ( 1st ‘ 𝑧 ) ∈ ℕ ) |
379 |
356 378
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑢 ∈ ℤ ∧ ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) ) ) → ( 2 · 𝑢 ) ∈ ℕ ) |
380 |
379
|
nngt0d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑢 ∈ ℤ ∧ ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) ) ) → 0 < ( 2 · 𝑢 ) ) |
381 |
376 380
|
eqbrtrid |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑢 ∈ ℤ ∧ ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) ) ) → ( 2 · 0 ) < ( 2 · 𝑢 ) ) |
382 |
|
0red |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑢 ∈ ℤ ∧ ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) ) ) → 0 ∈ ℝ ) |
383 |
|
ltmul2 |
⊢ ( ( 0 ∈ ℝ ∧ 𝑢 ∈ ℝ ∧ ( 2 ∈ ℝ ∧ 0 < 2 ) ) → ( 0 < 𝑢 ↔ ( 2 · 0 ) < ( 2 · 𝑢 ) ) ) |
384 |
382 366 368 369 383
|
syl112anc |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑢 ∈ ℤ ∧ ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) ) ) → ( 0 < 𝑢 ↔ ( 2 · 0 ) < ( 2 · 𝑢 ) ) ) |
385 |
381 384
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑢 ∈ ℤ ∧ ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) ) ) → 0 < 𝑢 ) |
386 |
|
elnnz |
⊢ ( 𝑢 ∈ ℕ ↔ ( 𝑢 ∈ ℤ ∧ 0 < 𝑢 ) ) |
387 |
373 385 386
|
sylanbrc |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑢 ∈ ℤ ∧ ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) ) ) → 𝑢 ∈ ℕ ) |
388 |
387 279
|
eleqtrdi |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑢 ∈ ℤ ∧ ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) ) ) → 𝑢 ∈ ( ℤ≥ ‘ 1 ) ) |
389 |
13
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑢 ∈ ℤ ∧ ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) ) ) → ( ⌊ ‘ ( 𝑀 / 2 ) ) ∈ ℤ ) |
390 |
|
elfz5 |
⊢ ( ( 𝑢 ∈ ( ℤ≥ ‘ 1 ) ∧ ( ⌊ ‘ ( 𝑀 / 2 ) ) ∈ ℤ ) → ( 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ↔ 𝑢 ≤ ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) |
391 |
388 389 390
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑢 ∈ ℤ ∧ ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) ) ) → ( 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ↔ 𝑢 ≤ ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) |
392 |
375 391
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑢 ∈ ℤ ∧ ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) ) ) → 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) |
393 |
392 356
|
jca |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑢 ∈ ℤ ∧ ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) ) ) → ( 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ∧ ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) ) ) |
394 |
393
|
ex |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) → ( ( 𝑢 ∈ ℤ ∧ ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) ) → ( 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ∧ ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) ) ) ) |
395 |
394
|
reximdv2 |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) → ( ∃ 𝑢 ∈ ℤ ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) → ∃ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) ) ) |
396 |
355 395
|
impbid2 |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) → ( ∃ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) ↔ ∃ 𝑢 ∈ ℤ ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) ) ) |
397 |
|
2z |
⊢ 2 ∈ ℤ |
398 |
360
|
elfzelzd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) → ( 1st ‘ 𝑧 ) ∈ ℤ ) |
399 |
|
divides |
⊢ ( ( 2 ∈ ℤ ∧ ( 1st ‘ 𝑧 ) ∈ ℤ ) → ( 2 ∥ ( 1st ‘ 𝑧 ) ↔ ∃ 𝑢 ∈ ℤ ( 𝑢 · 2 ) = ( 1st ‘ 𝑧 ) ) ) |
400 |
397 398 399
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) → ( 2 ∥ ( 1st ‘ 𝑧 ) ↔ ∃ 𝑢 ∈ ℤ ( 𝑢 · 2 ) = ( 1st ‘ 𝑧 ) ) ) |
401 |
353 396 400
|
3bitr4d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) → ( ∃ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) ↔ 2 ∥ ( 1st ‘ 𝑧 ) ) ) |
402 |
401
|
rabbidva |
⊢ ( 𝜑 → { 𝑧 ∈ 𝑆 ∣ ∃ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) } = { 𝑧 ∈ 𝑆 ∣ 2 ∥ ( 1st ‘ 𝑧 ) } ) |
403 |
346 402
|
syl5eq |
⊢ ( 𝜑 → ∪ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) { 𝑧 ∈ 𝑆 ∣ ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) } = { 𝑧 ∈ 𝑆 ∣ 2 ∥ ( 1st ‘ 𝑧 ) } ) |
404 |
403
|
fveq2d |
⊢ ( 𝜑 → ( ♯ ‘ ∪ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) { 𝑧 ∈ 𝑆 ∣ ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) } ) = ( ♯ ‘ { 𝑧 ∈ 𝑆 ∣ 2 ∥ ( 1st ‘ 𝑧 ) } ) ) |
405 |
326 345 404
|
3eqtr2d |
⊢ ( 𝜑 → Σ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) = ( ♯ ‘ { 𝑧 ∈ 𝑆 ∣ 2 ∥ ( 1st ‘ 𝑧 ) } ) ) |
406 |
405
|
oveq2d |
⊢ ( 𝜑 → ( - 1 ↑ Σ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) = ( - 1 ↑ ( ♯ ‘ { 𝑧 ∈ 𝑆 ∣ 2 ∥ ( 1st ‘ 𝑧 ) } ) ) ) |
407 |
1 2 3 4 5 6
|
lgsquadlem1 |
⊢ ( 𝜑 → ( - 1 ↑ Σ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) = ( - 1 ↑ ( ♯ ‘ { 𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ ( 1st ‘ 𝑧 ) } ) ) ) |
408 |
406 407
|
oveq12d |
⊢ ( 𝜑 → ( ( - 1 ↑ Σ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) · ( - 1 ↑ Σ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) = ( ( - 1 ↑ ( ♯ ‘ { 𝑧 ∈ 𝑆 ∣ 2 ∥ ( 1st ‘ 𝑧 ) } ) ) · ( - 1 ↑ ( ♯ ‘ { 𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ ( 1st ‘ 𝑧 ) } ) ) ) ) |
409 |
113 408
|
eqtr4d |
⊢ ( 𝜑 → ( - 1 ↑ ( ( ♯ ‘ { 𝑧 ∈ 𝑆 ∣ 2 ∥ ( 1st ‘ 𝑧 ) } ) + ( ♯ ‘ { 𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ ( 1st ‘ 𝑧 ) } ) ) ) = ( ( - 1 ↑ Σ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) · ( - 1 ↑ Σ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) ) |
410 |
|
inrab |
⊢ ( { 𝑧 ∈ 𝑆 ∣ 2 ∥ ( 1st ‘ 𝑧 ) } ∩ { 𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ ( 1st ‘ 𝑧 ) } ) = { 𝑧 ∈ 𝑆 ∣ ( 2 ∥ ( 1st ‘ 𝑧 ) ∧ ¬ 2 ∥ ( 1st ‘ 𝑧 ) ) } |
411 |
|
pm3.24 |
⊢ ¬ ( 2 ∥ ( 1st ‘ 𝑧 ) ∧ ¬ 2 ∥ ( 1st ‘ 𝑧 ) ) |
412 |
411
|
a1i |
⊢ ( 𝜑 → ¬ ( 2 ∥ ( 1st ‘ 𝑧 ) ∧ ¬ 2 ∥ ( 1st ‘ 𝑧 ) ) ) |
413 |
412
|
ralrimivw |
⊢ ( 𝜑 → ∀ 𝑧 ∈ 𝑆 ¬ ( 2 ∥ ( 1st ‘ 𝑧 ) ∧ ¬ 2 ∥ ( 1st ‘ 𝑧 ) ) ) |
414 |
|
rabeq0 |
⊢ ( { 𝑧 ∈ 𝑆 ∣ ( 2 ∥ ( 1st ‘ 𝑧 ) ∧ ¬ 2 ∥ ( 1st ‘ 𝑧 ) ) } = ∅ ↔ ∀ 𝑧 ∈ 𝑆 ¬ ( 2 ∥ ( 1st ‘ 𝑧 ) ∧ ¬ 2 ∥ ( 1st ‘ 𝑧 ) ) ) |
415 |
413 414
|
sylibr |
⊢ ( 𝜑 → { 𝑧 ∈ 𝑆 ∣ ( 2 ∥ ( 1st ‘ 𝑧 ) ∧ ¬ 2 ∥ ( 1st ‘ 𝑧 ) ) } = ∅ ) |
416 |
410 415
|
syl5eq |
⊢ ( 𝜑 → ( { 𝑧 ∈ 𝑆 ∣ 2 ∥ ( 1st ‘ 𝑧 ) } ∩ { 𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ ( 1st ‘ 𝑧 ) } ) = ∅ ) |
417 |
|
hashun |
⊢ ( ( { 𝑧 ∈ 𝑆 ∣ 2 ∥ ( 1st ‘ 𝑧 ) } ∈ Fin ∧ { 𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ ( 1st ‘ 𝑧 ) } ∈ Fin ∧ ( { 𝑧 ∈ 𝑆 ∣ 2 ∥ ( 1st ‘ 𝑧 ) } ∩ { 𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ ( 1st ‘ 𝑧 ) } ) = ∅ ) → ( ♯ ‘ ( { 𝑧 ∈ 𝑆 ∣ 2 ∥ ( 1st ‘ 𝑧 ) } ∪ { 𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ ( 1st ‘ 𝑧 ) } ) ) = ( ( ♯ ‘ { 𝑧 ∈ 𝑆 ∣ 2 ∥ ( 1st ‘ 𝑧 ) } ) + ( ♯ ‘ { 𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ ( 1st ‘ 𝑧 ) } ) ) ) |
418 |
110 105 416 417
|
syl3anc |
⊢ ( 𝜑 → ( ♯ ‘ ( { 𝑧 ∈ 𝑆 ∣ 2 ∥ ( 1st ‘ 𝑧 ) } ∪ { 𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ ( 1st ‘ 𝑧 ) } ) ) = ( ( ♯ ‘ { 𝑧 ∈ 𝑆 ∣ 2 ∥ ( 1st ‘ 𝑧 ) } ) + ( ♯ ‘ { 𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ ( 1st ‘ 𝑧 ) } ) ) ) |
419 |
|
unrab |
⊢ ( { 𝑧 ∈ 𝑆 ∣ 2 ∥ ( 1st ‘ 𝑧 ) } ∪ { 𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ ( 1st ‘ 𝑧 ) } ) = { 𝑧 ∈ 𝑆 ∣ ( 2 ∥ ( 1st ‘ 𝑧 ) ∨ ¬ 2 ∥ ( 1st ‘ 𝑧 ) ) } |
420 |
|
exmid |
⊢ ( 2 ∥ ( 1st ‘ 𝑧 ) ∨ ¬ 2 ∥ ( 1st ‘ 𝑧 ) ) |
421 |
420
|
rgenw |
⊢ ∀ 𝑧 ∈ 𝑆 ( 2 ∥ ( 1st ‘ 𝑧 ) ∨ ¬ 2 ∥ ( 1st ‘ 𝑧 ) ) |
422 |
|
rabid2 |
⊢ ( 𝑆 = { 𝑧 ∈ 𝑆 ∣ ( 2 ∥ ( 1st ‘ 𝑧 ) ∨ ¬ 2 ∥ ( 1st ‘ 𝑧 ) ) } ↔ ∀ 𝑧 ∈ 𝑆 ( 2 ∥ ( 1st ‘ 𝑧 ) ∨ ¬ 2 ∥ ( 1st ‘ 𝑧 ) ) ) |
423 |
421 422
|
mpbir |
⊢ 𝑆 = { 𝑧 ∈ 𝑆 ∣ ( 2 ∥ ( 1st ‘ 𝑧 ) ∨ ¬ 2 ∥ ( 1st ‘ 𝑧 ) ) } |
424 |
419 423
|
eqtr4i |
⊢ ( { 𝑧 ∈ 𝑆 ∣ 2 ∥ ( 1st ‘ 𝑧 ) } ∪ { 𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ ( 1st ‘ 𝑧 ) } ) = 𝑆 |
425 |
424
|
fveq2i |
⊢ ( ♯ ‘ ( { 𝑧 ∈ 𝑆 ∣ 2 ∥ ( 1st ‘ 𝑧 ) } ∪ { 𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ ( 1st ‘ 𝑧 ) } ) ) = ( ♯ ‘ 𝑆 ) |
426 |
418 425
|
eqtr3di |
⊢ ( 𝜑 → ( ( ♯ ‘ { 𝑧 ∈ 𝑆 ∣ 2 ∥ ( 1st ‘ 𝑧 ) } ) + ( ♯ ‘ { 𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ ( 1st ‘ 𝑧 ) } ) ) = ( ♯ ‘ 𝑆 ) ) |
427 |
426
|
oveq2d |
⊢ ( 𝜑 → ( - 1 ↑ ( ( ♯ ‘ { 𝑧 ∈ 𝑆 ∣ 2 ∥ ( 1st ‘ 𝑧 ) } ) + ( ♯ ‘ { 𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ ( 1st ‘ 𝑧 ) } ) ) ) = ( - 1 ↑ ( ♯ ‘ 𝑆 ) ) ) |
428 |
95 409 427
|
3eqtr2d |
⊢ ( 𝜑 → ( - 1 ↑ ( Σ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) + Σ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) = ( - 1 ↑ ( ♯ ‘ 𝑆 ) ) ) |
429 |
7 80 428
|
3eqtrd |
⊢ ( 𝜑 → ( 𝑄 /L 𝑃 ) = ( - 1 ↑ ( ♯ ‘ 𝑆 ) ) ) |