Metamath Proof Explorer


Theorem lgsquadlem2

Description: Lemma for lgsquad . Count the members of S with even coordinates, and combine with lgsquadlem1 to get the total count of lattice points in S (up to parity). (Contributed by Mario Carneiro, 18-Jun-2015)

Ref Expression
Hypotheses lgseisen.1 ( 𝜑𝑃 ∈ ( ℙ ∖ { 2 } ) )
lgseisen.2 ( 𝜑𝑄 ∈ ( ℙ ∖ { 2 } ) )
lgseisen.3 ( 𝜑𝑃𝑄 )
lgsquad.4 𝑀 = ( ( 𝑃 − 1 ) / 2 )
lgsquad.5 𝑁 = ( ( 𝑄 − 1 ) / 2 )
lgsquad.6 𝑆 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥 ∈ ( 1 ... 𝑀 ) ∧ 𝑦 ∈ ( 1 ... 𝑁 ) ) ∧ ( 𝑦 · 𝑃 ) < ( 𝑥 · 𝑄 ) ) }
Assertion lgsquadlem2 ( 𝜑 → ( 𝑄 /L 𝑃 ) = ( - 1 ↑ ( ♯ ‘ 𝑆 ) ) )

Proof

Step Hyp Ref Expression
1 lgseisen.1 ( 𝜑𝑃 ∈ ( ℙ ∖ { 2 } ) )
2 lgseisen.2 ( 𝜑𝑄 ∈ ( ℙ ∖ { 2 } ) )
3 lgseisen.3 ( 𝜑𝑃𝑄 )
4 lgsquad.4 𝑀 = ( ( 𝑃 − 1 ) / 2 )
5 lgsquad.5 𝑁 = ( ( 𝑄 − 1 ) / 2 )
6 lgsquad.6 𝑆 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥 ∈ ( 1 ... 𝑀 ) ∧ 𝑦 ∈ ( 1 ... 𝑁 ) ) ∧ ( 𝑦 · 𝑃 ) < ( 𝑥 · 𝑄 ) ) }
7 1 2 3 lgseisen ( 𝜑 → ( 𝑄 /L 𝑃 ) = ( - 1 ↑ Σ 𝑢 ∈ ( 1 ... ( ( 𝑃 − 1 ) / 2 ) ) ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) )
8 4 oveq2i ( 1 ... 𝑀 ) = ( 1 ... ( ( 𝑃 − 1 ) / 2 ) )
9 8 sumeq1i Σ 𝑢 ∈ ( 1 ... 𝑀 ) ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) = Σ 𝑢 ∈ ( 1 ... ( ( 𝑃 − 1 ) / 2 ) ) ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) )
10 1 4 gausslemma2dlem0b ( 𝜑𝑀 ∈ ℕ )
11 10 nnred ( 𝜑𝑀 ∈ ℝ )
12 11 rehalfcld ( 𝜑 → ( 𝑀 / 2 ) ∈ ℝ )
13 12 flcld ( 𝜑 → ( ⌊ ‘ ( 𝑀 / 2 ) ) ∈ ℤ )
14 13 zred ( 𝜑 → ( ⌊ ‘ ( 𝑀 / 2 ) ) ∈ ℝ )
15 14 ltp1d ( 𝜑 → ( ⌊ ‘ ( 𝑀 / 2 ) ) < ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) )
16 fzdisj ( ( ⌊ ‘ ( 𝑀 / 2 ) ) < ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) → ( ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ∩ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) = ∅ )
17 15 16 syl ( 𝜑 → ( ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ∩ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) = ∅ )
18 10 nnrpd ( 𝜑𝑀 ∈ ℝ+ )
19 18 rphalfcld ( 𝜑 → ( 𝑀 / 2 ) ∈ ℝ+ )
20 19 rpge0d ( 𝜑 → 0 ≤ ( 𝑀 / 2 ) )
21 flge0nn0 ( ( ( 𝑀 / 2 ) ∈ ℝ ∧ 0 ≤ ( 𝑀 / 2 ) ) → ( ⌊ ‘ ( 𝑀 / 2 ) ) ∈ ℕ0 )
22 12 20 21 syl2anc ( 𝜑 → ( ⌊ ‘ ( 𝑀 / 2 ) ) ∈ ℕ0 )
23 10 nnnn0d ( 𝜑𝑀 ∈ ℕ0 )
24 rphalflt ( 𝑀 ∈ ℝ+ → ( 𝑀 / 2 ) < 𝑀 )
25 18 24 syl ( 𝜑 → ( 𝑀 / 2 ) < 𝑀 )
26 10 nnzd ( 𝜑𝑀 ∈ ℤ )
27 fllt ( ( ( 𝑀 / 2 ) ∈ ℝ ∧ 𝑀 ∈ ℤ ) → ( ( 𝑀 / 2 ) < 𝑀 ↔ ( ⌊ ‘ ( 𝑀 / 2 ) ) < 𝑀 ) )
28 12 26 27 syl2anc ( 𝜑 → ( ( 𝑀 / 2 ) < 𝑀 ↔ ( ⌊ ‘ ( 𝑀 / 2 ) ) < 𝑀 ) )
29 25 28 mpbid ( 𝜑 → ( ⌊ ‘ ( 𝑀 / 2 ) ) < 𝑀 )
30 14 11 29 ltled ( 𝜑 → ( ⌊ ‘ ( 𝑀 / 2 ) ) ≤ 𝑀 )
31 elfz2nn0 ( ( ⌊ ‘ ( 𝑀 / 2 ) ) ∈ ( 0 ... 𝑀 ) ↔ ( ( ⌊ ‘ ( 𝑀 / 2 ) ) ∈ ℕ0𝑀 ∈ ℕ0 ∧ ( ⌊ ‘ ( 𝑀 / 2 ) ) ≤ 𝑀 ) )
32 22 23 30 31 syl3anbrc ( 𝜑 → ( ⌊ ‘ ( 𝑀 / 2 ) ) ∈ ( 0 ... 𝑀 ) )
33 nn0uz 0 = ( ℤ ‘ 0 )
34 23 33 eleqtrdi ( 𝜑𝑀 ∈ ( ℤ ‘ 0 ) )
35 elfzp12 ( 𝑀 ∈ ( ℤ ‘ 0 ) → ( ( ⌊ ‘ ( 𝑀 / 2 ) ) ∈ ( 0 ... 𝑀 ) ↔ ( ( ⌊ ‘ ( 𝑀 / 2 ) ) = 0 ∨ ( ⌊ ‘ ( 𝑀 / 2 ) ) ∈ ( ( 0 + 1 ) ... 𝑀 ) ) ) )
36 34 35 syl ( 𝜑 → ( ( ⌊ ‘ ( 𝑀 / 2 ) ) ∈ ( 0 ... 𝑀 ) ↔ ( ( ⌊ ‘ ( 𝑀 / 2 ) ) = 0 ∨ ( ⌊ ‘ ( 𝑀 / 2 ) ) ∈ ( ( 0 + 1 ) ... 𝑀 ) ) ) )
37 32 36 mpbid ( 𝜑 → ( ( ⌊ ‘ ( 𝑀 / 2 ) ) = 0 ∨ ( ⌊ ‘ ( 𝑀 / 2 ) ) ∈ ( ( 0 + 1 ) ... 𝑀 ) ) )
38 un0 ( ( 1 ... 𝑀 ) ∪ ∅ ) = ( 1 ... 𝑀 )
39 uncom ( ( 1 ... 𝑀 ) ∪ ∅ ) = ( ∅ ∪ ( 1 ... 𝑀 ) )
40 38 39 eqtr3i ( 1 ... 𝑀 ) = ( ∅ ∪ ( 1 ... 𝑀 ) )
41 oveq2 ( ( ⌊ ‘ ( 𝑀 / 2 ) ) = 0 → ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) = ( 1 ... 0 ) )
42 fz10 ( 1 ... 0 ) = ∅
43 41 42 eqtrdi ( ( ⌊ ‘ ( 𝑀 / 2 ) ) = 0 → ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) = ∅ )
44 oveq1 ( ( ⌊ ‘ ( 𝑀 / 2 ) ) = 0 → ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) = ( 0 + 1 ) )
45 0p1e1 ( 0 + 1 ) = 1
46 44 45 eqtrdi ( ( ⌊ ‘ ( 𝑀 / 2 ) ) = 0 → ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) = 1 )
47 46 oveq1d ( ( ⌊ ‘ ( 𝑀 / 2 ) ) = 0 → ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) = ( 1 ... 𝑀 ) )
48 43 47 uneq12d ( ( ⌊ ‘ ( 𝑀 / 2 ) ) = 0 → ( ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ∪ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) = ( ∅ ∪ ( 1 ... 𝑀 ) ) )
49 40 48 eqtr4id ( ( ⌊ ‘ ( 𝑀 / 2 ) ) = 0 → ( 1 ... 𝑀 ) = ( ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ∪ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) )
50 fzsplit ( ( ⌊ ‘ ( 𝑀 / 2 ) ) ∈ ( 1 ... 𝑀 ) → ( 1 ... 𝑀 ) = ( ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ∪ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) )
51 45 oveq1i ( ( 0 + 1 ) ... 𝑀 ) = ( 1 ... 𝑀 )
52 50 51 eleq2s ( ( ⌊ ‘ ( 𝑀 / 2 ) ) ∈ ( ( 0 + 1 ) ... 𝑀 ) → ( 1 ... 𝑀 ) = ( ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ∪ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) )
53 49 52 jaoi ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) = 0 ∨ ( ⌊ ‘ ( 𝑀 / 2 ) ) ∈ ( ( 0 + 1 ) ... 𝑀 ) ) → ( 1 ... 𝑀 ) = ( ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ∪ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) )
54 37 53 syl ( 𝜑 → ( 1 ... 𝑀 ) = ( ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ∪ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) )
55 fzfid ( 𝜑 → ( 1 ... 𝑀 ) ∈ Fin )
56 2 gausslemma2dlem0a ( 𝜑𝑄 ∈ ℕ )
57 56 nnred ( 𝜑𝑄 ∈ ℝ )
58 1 gausslemma2dlem0a ( 𝜑𝑃 ∈ ℕ )
59 57 58 nndivred ( 𝜑 → ( 𝑄 / 𝑃 ) ∈ ℝ )
60 59 adantr ( ( 𝜑𝑢 ∈ ( 1 ... 𝑀 ) ) → ( 𝑄 / 𝑃 ) ∈ ℝ )
61 2nn 2 ∈ ℕ
62 elfznn ( 𝑢 ∈ ( 1 ... 𝑀 ) → 𝑢 ∈ ℕ )
63 62 adantl ( ( 𝜑𝑢 ∈ ( 1 ... 𝑀 ) ) → 𝑢 ∈ ℕ )
64 nnmulcl ( ( 2 ∈ ℕ ∧ 𝑢 ∈ ℕ ) → ( 2 · 𝑢 ) ∈ ℕ )
65 61 63 64 sylancr ( ( 𝜑𝑢 ∈ ( 1 ... 𝑀 ) ) → ( 2 · 𝑢 ) ∈ ℕ )
66 65 nnred ( ( 𝜑𝑢 ∈ ( 1 ... 𝑀 ) ) → ( 2 · 𝑢 ) ∈ ℝ )
67 60 66 remulcld ( ( 𝜑𝑢 ∈ ( 1 ... 𝑀 ) ) → ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ∈ ℝ )
68 56 nnrpd ( 𝜑𝑄 ∈ ℝ+ )
69 58 nnrpd ( 𝜑𝑃 ∈ ℝ+ )
70 68 69 rpdivcld ( 𝜑 → ( 𝑄 / 𝑃 ) ∈ ℝ+ )
71 70 adantr ( ( 𝜑𝑢 ∈ ( 1 ... 𝑀 ) ) → ( 𝑄 / 𝑃 ) ∈ ℝ+ )
72 65 nnrpd ( ( 𝜑𝑢 ∈ ( 1 ... 𝑀 ) ) → ( 2 · 𝑢 ) ∈ ℝ+ )
73 71 72 rpmulcld ( ( 𝜑𝑢 ∈ ( 1 ... 𝑀 ) ) → ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ∈ ℝ+ )
74 73 rpge0d ( ( 𝜑𝑢 ∈ ( 1 ... 𝑀 ) ) → 0 ≤ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) )
75 flge0nn0 ( ( ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ∈ ℝ ∧ 0 ≤ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) → ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ∈ ℕ0 )
76 67 74 75 syl2anc ( ( 𝜑𝑢 ∈ ( 1 ... 𝑀 ) ) → ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ∈ ℕ0 )
77 76 nn0cnd ( ( 𝜑𝑢 ∈ ( 1 ... 𝑀 ) ) → ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ∈ ℂ )
78 17 54 55 77 fsumsplit ( 𝜑 → Σ 𝑢 ∈ ( 1 ... 𝑀 ) ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) = ( Σ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) + Σ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) )
79 9 78 eqtr3id ( 𝜑 → Σ 𝑢 ∈ ( 1 ... ( ( 𝑃 − 1 ) / 2 ) ) ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) = ( Σ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) + Σ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) )
80 79 oveq2d ( 𝜑 → ( - 1 ↑ Σ 𝑢 ∈ ( 1 ... ( ( 𝑃 − 1 ) / 2 ) ) ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) = ( - 1 ↑ ( Σ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) + Σ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) )
81 neg1cn - 1 ∈ ℂ
82 81 a1i ( 𝜑 → - 1 ∈ ℂ )
83 fzfid ( 𝜑 → ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ∈ Fin )
84 ssun2 ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ⊆ ( ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ∪ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) )
85 84 54 sseqtrrid ( 𝜑 → ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ⊆ ( 1 ... 𝑀 ) )
86 85 sselda ( ( 𝜑𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → 𝑢 ∈ ( 1 ... 𝑀 ) )
87 86 76 syldan ( ( 𝜑𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ∈ ℕ0 )
88 83 87 fsumnn0cl ( 𝜑 → Σ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ∈ ℕ0 )
89 fzfid ( 𝜑 → ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ∈ Fin )
90 ssun1 ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ⊆ ( ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ∪ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) )
91 90 54 sseqtrrid ( 𝜑 → ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ⊆ ( 1 ... 𝑀 ) )
92 91 sselda ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) → 𝑢 ∈ ( 1 ... 𝑀 ) )
93 92 76 syldan ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) → ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ∈ ℕ0 )
94 89 93 fsumnn0cl ( 𝜑 → Σ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ∈ ℕ0 )
95 82 88 94 expaddd ( 𝜑 → ( - 1 ↑ ( Σ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) + Σ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) = ( ( - 1 ↑ Σ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) · ( - 1 ↑ Σ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) )
96 fzfid ( 𝜑 → ( 1 ... 𝑁 ) ∈ Fin )
97 xpfi ( ( ( 1 ... 𝑀 ) ∈ Fin ∧ ( 1 ... 𝑁 ) ∈ Fin ) → ( ( 1 ... 𝑀 ) × ( 1 ... 𝑁 ) ) ∈ Fin )
98 55 96 97 syl2anc ( 𝜑 → ( ( 1 ... 𝑀 ) × ( 1 ... 𝑁 ) ) ∈ Fin )
99 opabssxp { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥 ∈ ( 1 ... 𝑀 ) ∧ 𝑦 ∈ ( 1 ... 𝑁 ) ) ∧ ( 𝑦 · 𝑃 ) < ( 𝑥 · 𝑄 ) ) } ⊆ ( ( 1 ... 𝑀 ) × ( 1 ... 𝑁 ) )
100 6 99 eqsstri 𝑆 ⊆ ( ( 1 ... 𝑀 ) × ( 1 ... 𝑁 ) )
101 ssfi ( ( ( ( 1 ... 𝑀 ) × ( 1 ... 𝑁 ) ) ∈ Fin ∧ 𝑆 ⊆ ( ( 1 ... 𝑀 ) × ( 1 ... 𝑁 ) ) ) → 𝑆 ∈ Fin )
102 98 100 101 sylancl ( 𝜑𝑆 ∈ Fin )
103 ssrab2 { 𝑧𝑆 ∣ ¬ 2 ∥ ( 1st𝑧 ) } ⊆ 𝑆
104 ssfi ( ( 𝑆 ∈ Fin ∧ { 𝑧𝑆 ∣ ¬ 2 ∥ ( 1st𝑧 ) } ⊆ 𝑆 ) → { 𝑧𝑆 ∣ ¬ 2 ∥ ( 1st𝑧 ) } ∈ Fin )
105 102 103 104 sylancl ( 𝜑 → { 𝑧𝑆 ∣ ¬ 2 ∥ ( 1st𝑧 ) } ∈ Fin )
106 hashcl ( { 𝑧𝑆 ∣ ¬ 2 ∥ ( 1st𝑧 ) } ∈ Fin → ( ♯ ‘ { 𝑧𝑆 ∣ ¬ 2 ∥ ( 1st𝑧 ) } ) ∈ ℕ0 )
107 105 106 syl ( 𝜑 → ( ♯ ‘ { 𝑧𝑆 ∣ ¬ 2 ∥ ( 1st𝑧 ) } ) ∈ ℕ0 )
108 ssrab2 { 𝑧𝑆 ∣ 2 ∥ ( 1st𝑧 ) } ⊆ 𝑆
109 ssfi ( ( 𝑆 ∈ Fin ∧ { 𝑧𝑆 ∣ 2 ∥ ( 1st𝑧 ) } ⊆ 𝑆 ) → { 𝑧𝑆 ∣ 2 ∥ ( 1st𝑧 ) } ∈ Fin )
110 102 108 109 sylancl ( 𝜑 → { 𝑧𝑆 ∣ 2 ∥ ( 1st𝑧 ) } ∈ Fin )
111 hashcl ( { 𝑧𝑆 ∣ 2 ∥ ( 1st𝑧 ) } ∈ Fin → ( ♯ ‘ { 𝑧𝑆 ∣ 2 ∥ ( 1st𝑧 ) } ) ∈ ℕ0 )
112 110 111 syl ( 𝜑 → ( ♯ ‘ { 𝑧𝑆 ∣ 2 ∥ ( 1st𝑧 ) } ) ∈ ℕ0 )
113 82 107 112 expaddd ( 𝜑 → ( - 1 ↑ ( ( ♯ ‘ { 𝑧𝑆 ∣ 2 ∥ ( 1st𝑧 ) } ) + ( ♯ ‘ { 𝑧𝑆 ∣ ¬ 2 ∥ ( 1st𝑧 ) } ) ) ) = ( ( - 1 ↑ ( ♯ ‘ { 𝑧𝑆 ∣ 2 ∥ ( 1st𝑧 ) } ) ) · ( - 1 ↑ ( ♯ ‘ { 𝑧𝑆 ∣ ¬ 2 ∥ ( 1st𝑧 ) } ) ) ) )
114 92 65 syldan ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) → ( 2 · 𝑢 ) ∈ ℕ )
115 fzfid ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) → ( 1 ... ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ∈ Fin )
116 xpsnen2g ( ( ( 2 · 𝑢 ) ∈ ℕ ∧ ( 1 ... ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ∈ Fin ) → ( { ( 2 · 𝑢 ) } × ( 1 ... ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) ≈ ( 1 ... ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) )
117 114 115 116 syl2anc ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) → ( { ( 2 · 𝑢 ) } × ( 1 ... ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) ≈ ( 1 ... ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) )
118 hasheni ( ( { ( 2 · 𝑢 ) } × ( 1 ... ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) ≈ ( 1 ... ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) → ( ♯ ‘ ( { ( 2 · 𝑢 ) } × ( 1 ... ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) ) = ( ♯ ‘ ( 1 ... ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) )
119 117 118 syl ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) → ( ♯ ‘ ( { ( 2 · 𝑢 ) } × ( 1 ... ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) ) = ( ♯ ‘ ( 1 ... ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) )
120 ssrab2 { 𝑧𝑆 ∣ ( 2 · 𝑢 ) = ( 1st𝑧 ) } ⊆ 𝑆
121 6 relopabiv Rel 𝑆
122 relss ( { 𝑧𝑆 ∣ ( 2 · 𝑢 ) = ( 1st𝑧 ) } ⊆ 𝑆 → ( Rel 𝑆 → Rel { 𝑧𝑆 ∣ ( 2 · 𝑢 ) = ( 1st𝑧 ) } ) )
123 120 121 122 mp2 Rel { 𝑧𝑆 ∣ ( 2 · 𝑢 ) = ( 1st𝑧 ) }
124 relxp Rel ( { ( 2 · 𝑢 ) } × ( 1 ... ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) )
125 6 eleq2i ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝑆 ↔ ⟨ 𝑥 , 𝑦 ⟩ ∈ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥 ∈ ( 1 ... 𝑀 ) ∧ 𝑦 ∈ ( 1 ... 𝑁 ) ) ∧ ( 𝑦 · 𝑃 ) < ( 𝑥 · 𝑄 ) ) } )
126 opabidw ( ⟨ 𝑥 , 𝑦 ⟩ ∈ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥 ∈ ( 1 ... 𝑀 ) ∧ 𝑦 ∈ ( 1 ... 𝑁 ) ) ∧ ( 𝑦 · 𝑃 ) < ( 𝑥 · 𝑄 ) ) } ↔ ( ( 𝑥 ∈ ( 1 ... 𝑀 ) ∧ 𝑦 ∈ ( 1 ... 𝑁 ) ) ∧ ( 𝑦 · 𝑃 ) < ( 𝑥 · 𝑄 ) ) )
127 125 126 bitri ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝑆 ↔ ( ( 𝑥 ∈ ( 1 ... 𝑀 ) ∧ 𝑦 ∈ ( 1 ... 𝑁 ) ) ∧ ( 𝑦 · 𝑃 ) < ( 𝑥 · 𝑄 ) ) )
128 anass ( ( ( 𝑦 ∈ ℕ ∧ 𝑦𝑁 ) ∧ ( 𝑦 · 𝑃 ) < ( 𝑄 · ( 2 · 𝑢 ) ) ) ↔ ( 𝑦 ∈ ℕ ∧ ( 𝑦𝑁 ∧ ( 𝑦 · 𝑃 ) < ( 𝑄 · ( 2 · 𝑢 ) ) ) ) )
129 114 adantr ( ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( 2 · 𝑢 ) ∈ ℕ )
130 129 nnred ( ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( 2 · 𝑢 ) ∈ ℝ )
131 58 ad2antrr ( ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → 𝑃 ∈ ℕ )
132 131 nnred ( ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → 𝑃 ∈ ℝ )
133 132 rehalfcld ( ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( 𝑃 / 2 ) ∈ ℝ )
134 11 adantr ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) → 𝑀 ∈ ℝ )
135 134 adantr ( ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → 𝑀 ∈ ℝ )
136 elfzle2 ( 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) → 𝑢 ≤ ( ⌊ ‘ ( 𝑀 / 2 ) ) )
137 136 adantl ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) → 𝑢 ≤ ( ⌊ ‘ ( 𝑀 / 2 ) ) )
138 134 rehalfcld ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) → ( 𝑀 / 2 ) ∈ ℝ )
139 elfzelz ( 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) → 𝑢 ∈ ℤ )
140 139 adantl ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) → 𝑢 ∈ ℤ )
141 flge ( ( ( 𝑀 / 2 ) ∈ ℝ ∧ 𝑢 ∈ ℤ ) → ( 𝑢 ≤ ( 𝑀 / 2 ) ↔ 𝑢 ≤ ( ⌊ ‘ ( 𝑀 / 2 ) ) ) )
142 138 140 141 syl2anc ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) → ( 𝑢 ≤ ( 𝑀 / 2 ) ↔ 𝑢 ≤ ( ⌊ ‘ ( 𝑀 / 2 ) ) ) )
143 137 142 mpbird ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) → 𝑢 ≤ ( 𝑀 / 2 ) )
144 elfznn ( 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) → 𝑢 ∈ ℕ )
145 144 adantl ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) → 𝑢 ∈ ℕ )
146 145 nnred ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) → 𝑢 ∈ ℝ )
147 2re 2 ∈ ℝ
148 147 a1i ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) → 2 ∈ ℝ )
149 2pos 0 < 2
150 149 a1i ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) → 0 < 2 )
151 lemuldiv2 ( ( 𝑢 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ ( 2 ∈ ℝ ∧ 0 < 2 ) ) → ( ( 2 · 𝑢 ) ≤ 𝑀𝑢 ≤ ( 𝑀 / 2 ) ) )
152 146 134 148 150 151 syl112anc ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) → ( ( 2 · 𝑢 ) ≤ 𝑀𝑢 ≤ ( 𝑀 / 2 ) ) )
153 143 152 mpbird ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) → ( 2 · 𝑢 ) ≤ 𝑀 )
154 153 adantr ( ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( 2 · 𝑢 ) ≤ 𝑀 )
155 132 ltm1d ( ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( 𝑃 − 1 ) < 𝑃 )
156 peano2rem ( 𝑃 ∈ ℝ → ( 𝑃 − 1 ) ∈ ℝ )
157 132 156 syl ( ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( 𝑃 − 1 ) ∈ ℝ )
158 147 a1i ( ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → 2 ∈ ℝ )
159 149 a1i ( ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → 0 < 2 )
160 ltdiv1 ( ( ( 𝑃 − 1 ) ∈ ℝ ∧ 𝑃 ∈ ℝ ∧ ( 2 ∈ ℝ ∧ 0 < 2 ) ) → ( ( 𝑃 − 1 ) < 𝑃 ↔ ( ( 𝑃 − 1 ) / 2 ) < ( 𝑃 / 2 ) ) )
161 157 132 158 159 160 syl112anc ( ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( ( 𝑃 − 1 ) < 𝑃 ↔ ( ( 𝑃 − 1 ) / 2 ) < ( 𝑃 / 2 ) ) )
162 155 161 mpbid ( ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( ( 𝑃 − 1 ) / 2 ) < ( 𝑃 / 2 ) )
163 4 162 eqbrtrid ( ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → 𝑀 < ( 𝑃 / 2 ) )
164 130 135 133 154 163 lelttrd ( ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( 2 · 𝑢 ) < ( 𝑃 / 2 ) )
165 131 nnrpd ( ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → 𝑃 ∈ ℝ+ )
166 rphalflt ( 𝑃 ∈ ℝ+ → ( 𝑃 / 2 ) < 𝑃 )
167 165 166 syl ( ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( 𝑃 / 2 ) < 𝑃 )
168 130 133 132 164 167 lttrd ( ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( 2 · 𝑢 ) < 𝑃 )
169 130 132 ltnled ( ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( ( 2 · 𝑢 ) < 𝑃 ↔ ¬ 𝑃 ≤ ( 2 · 𝑢 ) ) )
170 168 169 mpbid ( ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ¬ 𝑃 ≤ ( 2 · 𝑢 ) )
171 1 eldifad ( 𝜑𝑃 ∈ ℙ )
172 171 ad2antrr ( ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → 𝑃 ∈ ℙ )
173 prmz ( 𝑃 ∈ ℙ → 𝑃 ∈ ℤ )
174 172 173 syl ( ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → 𝑃 ∈ ℤ )
175 dvdsle ( ( 𝑃 ∈ ℤ ∧ ( 2 · 𝑢 ) ∈ ℕ ) → ( 𝑃 ∥ ( 2 · 𝑢 ) → 𝑃 ≤ ( 2 · 𝑢 ) ) )
176 174 129 175 syl2anc ( ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( 𝑃 ∥ ( 2 · 𝑢 ) → 𝑃 ≤ ( 2 · 𝑢 ) ) )
177 170 176 mtod ( ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ¬ 𝑃 ∥ ( 2 · 𝑢 ) )
178 2 eldifad ( 𝜑𝑄 ∈ ℙ )
179 prmrp ( ( 𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ) → ( ( 𝑃 gcd 𝑄 ) = 1 ↔ 𝑃𝑄 ) )
180 171 178 179 syl2anc ( 𝜑 → ( ( 𝑃 gcd 𝑄 ) = 1 ↔ 𝑃𝑄 ) )
181 3 180 mpbird ( 𝜑 → ( 𝑃 gcd 𝑄 ) = 1 )
182 181 ad2antrr ( ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( 𝑃 gcd 𝑄 ) = 1 )
183 178 ad2antrr ( ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → 𝑄 ∈ ℙ )
184 prmz ( 𝑄 ∈ ℙ → 𝑄 ∈ ℤ )
185 183 184 syl ( ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → 𝑄 ∈ ℤ )
186 129 nnzd ( ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( 2 · 𝑢 ) ∈ ℤ )
187 coprmdvds ( ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℤ ∧ ( 2 · 𝑢 ) ∈ ℤ ) → ( ( 𝑃 ∥ ( 𝑄 · ( 2 · 𝑢 ) ) ∧ ( 𝑃 gcd 𝑄 ) = 1 ) → 𝑃 ∥ ( 2 · 𝑢 ) ) )
188 174 185 186 187 syl3anc ( ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( ( 𝑃 ∥ ( 𝑄 · ( 2 · 𝑢 ) ) ∧ ( 𝑃 gcd 𝑄 ) = 1 ) → 𝑃 ∥ ( 2 · 𝑢 ) ) )
189 182 188 mpan2d ( ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( 𝑃 ∥ ( 𝑄 · ( 2 · 𝑢 ) ) → 𝑃 ∥ ( 2 · 𝑢 ) ) )
190 177 189 mtod ( ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ¬ 𝑃 ∥ ( 𝑄 · ( 2 · 𝑢 ) ) )
191 nnz ( 𝑦 ∈ ℕ → 𝑦 ∈ ℤ )
192 191 adantl ( ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → 𝑦 ∈ ℤ )
193 dvdsmul2 ( ( 𝑦 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → 𝑃 ∥ ( 𝑦 · 𝑃 ) )
194 192 174 193 syl2anc ( ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → 𝑃 ∥ ( 𝑦 · 𝑃 ) )
195 breq2 ( ( 𝑄 · ( 2 · 𝑢 ) ) = ( 𝑦 · 𝑃 ) → ( 𝑃 ∥ ( 𝑄 · ( 2 · 𝑢 ) ) ↔ 𝑃 ∥ ( 𝑦 · 𝑃 ) ) )
196 194 195 syl5ibrcom ( ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( ( 𝑄 · ( 2 · 𝑢 ) ) = ( 𝑦 · 𝑃 ) → 𝑃 ∥ ( 𝑄 · ( 2 · 𝑢 ) ) ) )
197 196 necon3bd ( ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( ¬ 𝑃 ∥ ( 𝑄 · ( 2 · 𝑢 ) ) → ( 𝑄 · ( 2 · 𝑢 ) ) ≠ ( 𝑦 · 𝑃 ) ) )
198 190 197 mpd ( ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( 𝑄 · ( 2 · 𝑢 ) ) ≠ ( 𝑦 · 𝑃 ) )
199 simpr ( ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → 𝑦 ∈ ℕ )
200 199 131 nnmulcld ( ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( 𝑦 · 𝑃 ) ∈ ℕ )
201 200 nnred ( ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( 𝑦 · 𝑃 ) ∈ ℝ )
202 56 adantr ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) → 𝑄 ∈ ℕ )
203 202 114 nnmulcld ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) → ( 𝑄 · ( 2 · 𝑢 ) ) ∈ ℕ )
204 203 adantr ( ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( 𝑄 · ( 2 · 𝑢 ) ) ∈ ℕ )
205 204 nnred ( ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( 𝑄 · ( 2 · 𝑢 ) ) ∈ ℝ )
206 201 205 ltlend ( ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( ( 𝑦 · 𝑃 ) < ( 𝑄 · ( 2 · 𝑢 ) ) ↔ ( ( 𝑦 · 𝑃 ) ≤ ( 𝑄 · ( 2 · 𝑢 ) ) ∧ ( 𝑄 · ( 2 · 𝑢 ) ) ≠ ( 𝑦 · 𝑃 ) ) ) )
207 198 206 mpbiran2d ( ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( ( 𝑦 · 𝑃 ) < ( 𝑄 · ( 2 · 𝑢 ) ) ↔ ( 𝑦 · 𝑃 ) ≤ ( 𝑄 · ( 2 · 𝑢 ) ) ) )
208 nnre ( 𝑦 ∈ ℕ → 𝑦 ∈ ℝ )
209 208 adantl ( ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → 𝑦 ∈ ℝ )
210 131 nngt0d ( ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → 0 < 𝑃 )
211 lemuldiv ( ( 𝑦 ∈ ℝ ∧ ( 𝑄 · ( 2 · 𝑢 ) ) ∈ ℝ ∧ ( 𝑃 ∈ ℝ ∧ 0 < 𝑃 ) ) → ( ( 𝑦 · 𝑃 ) ≤ ( 𝑄 · ( 2 · 𝑢 ) ) ↔ 𝑦 ≤ ( ( 𝑄 · ( 2 · 𝑢 ) ) / 𝑃 ) ) )
212 209 205 132 210 211 syl112anc ( ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( ( 𝑦 · 𝑃 ) ≤ ( 𝑄 · ( 2 · 𝑢 ) ) ↔ 𝑦 ≤ ( ( 𝑄 · ( 2 · 𝑢 ) ) / 𝑃 ) ) )
213 202 adantr ( ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → 𝑄 ∈ ℕ )
214 213 nncnd ( ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → 𝑄 ∈ ℂ )
215 129 nncnd ( ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( 2 · 𝑢 ) ∈ ℂ )
216 131 nncnd ( ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → 𝑃 ∈ ℂ )
217 131 nnne0d ( ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → 𝑃 ≠ 0 )
218 214 215 216 217 div23d ( ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( ( 𝑄 · ( 2 · 𝑢 ) ) / 𝑃 ) = ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) )
219 218 breq2d ( ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( 𝑦 ≤ ( ( 𝑄 · ( 2 · 𝑢 ) ) / 𝑃 ) ↔ 𝑦 ≤ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) )
220 207 212 219 3bitrd ( ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( ( 𝑦 · 𝑃 ) < ( 𝑄 · ( 2 · 𝑢 ) ) ↔ 𝑦 ≤ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) )
221 213 nnred ( ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → 𝑄 ∈ ℝ )
222 213 nngt0d ( ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → 0 < 𝑄 )
223 ltmul2 ( ( ( 2 · 𝑢 ) ∈ ℝ ∧ ( 𝑃 / 2 ) ∈ ℝ ∧ ( 𝑄 ∈ ℝ ∧ 0 < 𝑄 ) ) → ( ( 2 · 𝑢 ) < ( 𝑃 / 2 ) ↔ ( 𝑄 · ( 2 · 𝑢 ) ) < ( 𝑄 · ( 𝑃 / 2 ) ) ) )
224 130 133 221 222 223 syl112anc ( ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( ( 2 · 𝑢 ) < ( 𝑃 / 2 ) ↔ ( 𝑄 · ( 2 · 𝑢 ) ) < ( 𝑄 · ( 𝑃 / 2 ) ) ) )
225 164 224 mpbid ( ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( 𝑄 · ( 2 · 𝑢 ) ) < ( 𝑄 · ( 𝑃 / 2 ) ) )
226 2cnd ( ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → 2 ∈ ℂ )
227 2ne0 2 ≠ 0
228 227 a1i ( ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → 2 ≠ 0 )
229 divass ( ( 𝑄 ∈ ℂ ∧ 𝑃 ∈ ℂ ∧ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ) → ( ( 𝑄 · 𝑃 ) / 2 ) = ( 𝑄 · ( 𝑃 / 2 ) ) )
230 div23 ( ( 𝑄 ∈ ℂ ∧ 𝑃 ∈ ℂ ∧ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ) → ( ( 𝑄 · 𝑃 ) / 2 ) = ( ( 𝑄 / 2 ) · 𝑃 ) )
231 229 230 eqtr3d ( ( 𝑄 ∈ ℂ ∧ 𝑃 ∈ ℂ ∧ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ) → ( 𝑄 · ( 𝑃 / 2 ) ) = ( ( 𝑄 / 2 ) · 𝑃 ) )
232 214 216 226 228 231 syl112anc ( ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( 𝑄 · ( 𝑃 / 2 ) ) = ( ( 𝑄 / 2 ) · 𝑃 ) )
233 225 232 breqtrd ( ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( 𝑄 · ( 2 · 𝑢 ) ) < ( ( 𝑄 / 2 ) · 𝑃 ) )
234 221 rehalfcld ( ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( 𝑄 / 2 ) ∈ ℝ )
235 234 132 remulcld ( ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( ( 𝑄 / 2 ) · 𝑃 ) ∈ ℝ )
236 lttr ( ( ( 𝑦 · 𝑃 ) ∈ ℝ ∧ ( 𝑄 · ( 2 · 𝑢 ) ) ∈ ℝ ∧ ( ( 𝑄 / 2 ) · 𝑃 ) ∈ ℝ ) → ( ( ( 𝑦 · 𝑃 ) < ( 𝑄 · ( 2 · 𝑢 ) ) ∧ ( 𝑄 · ( 2 · 𝑢 ) ) < ( ( 𝑄 / 2 ) · 𝑃 ) ) → ( 𝑦 · 𝑃 ) < ( ( 𝑄 / 2 ) · 𝑃 ) ) )
237 201 205 235 236 syl3anc ( ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( ( ( 𝑦 · 𝑃 ) < ( 𝑄 · ( 2 · 𝑢 ) ) ∧ ( 𝑄 · ( 2 · 𝑢 ) ) < ( ( 𝑄 / 2 ) · 𝑃 ) ) → ( 𝑦 · 𝑃 ) < ( ( 𝑄 / 2 ) · 𝑃 ) ) )
238 233 237 mpan2d ( ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( ( 𝑦 · 𝑃 ) < ( 𝑄 · ( 2 · 𝑢 ) ) → ( 𝑦 · 𝑃 ) < ( ( 𝑄 / 2 ) · 𝑃 ) ) )
239 ltmul1 ( ( 𝑦 ∈ ℝ ∧ ( 𝑄 / 2 ) ∈ ℝ ∧ ( 𝑃 ∈ ℝ ∧ 0 < 𝑃 ) ) → ( 𝑦 < ( 𝑄 / 2 ) ↔ ( 𝑦 · 𝑃 ) < ( ( 𝑄 / 2 ) · 𝑃 ) ) )
240 209 234 132 210 239 syl112anc ( ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( 𝑦 < ( 𝑄 / 2 ) ↔ ( 𝑦 · 𝑃 ) < ( ( 𝑄 / 2 ) · 𝑃 ) ) )
241 238 240 sylibrd ( ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( ( 𝑦 · 𝑃 ) < ( 𝑄 · ( 2 · 𝑢 ) ) → 𝑦 < ( 𝑄 / 2 ) ) )
242 peano2rem ( 𝑄 ∈ ℝ → ( 𝑄 − 1 ) ∈ ℝ )
243 221 242 syl ( ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( 𝑄 − 1 ) ∈ ℝ )
244 243 recnd ( ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( 𝑄 − 1 ) ∈ ℂ )
245 214 244 226 228 divsubdird ( ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( ( 𝑄 − ( 𝑄 − 1 ) ) / 2 ) = ( ( 𝑄 / 2 ) − ( ( 𝑄 − 1 ) / 2 ) ) )
246 5 oveq2i ( ( 𝑄 / 2 ) − 𝑁 ) = ( ( 𝑄 / 2 ) − ( ( 𝑄 − 1 ) / 2 ) )
247 245 246 eqtr4di ( ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( ( 𝑄 − ( 𝑄 − 1 ) ) / 2 ) = ( ( 𝑄 / 2 ) − 𝑁 ) )
248 ax-1cn 1 ∈ ℂ
249 nncan ( ( 𝑄 ∈ ℂ ∧ 1 ∈ ℂ ) → ( 𝑄 − ( 𝑄 − 1 ) ) = 1 )
250 214 248 249 sylancl ( ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( 𝑄 − ( 𝑄 − 1 ) ) = 1 )
251 250 oveq1d ( ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( ( 𝑄 − ( 𝑄 − 1 ) ) / 2 ) = ( 1 / 2 ) )
252 halflt1 ( 1 / 2 ) < 1
253 251 252 eqbrtrdi ( ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( ( 𝑄 − ( 𝑄 − 1 ) ) / 2 ) < 1 )
254 247 253 eqbrtrrd ( ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( ( 𝑄 / 2 ) − 𝑁 ) < 1 )
255 2 5 gausslemma2dlem0b ( 𝜑𝑁 ∈ ℕ )
256 255 ad2antrr ( ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → 𝑁 ∈ ℕ )
257 256 nnred ( ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → 𝑁 ∈ ℝ )
258 1red ( ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → 1 ∈ ℝ )
259 234 257 258 ltsubadd2d ( ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( ( ( 𝑄 / 2 ) − 𝑁 ) < 1 ↔ ( 𝑄 / 2 ) < ( 𝑁 + 1 ) ) )
260 254 259 mpbid ( ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( 𝑄 / 2 ) < ( 𝑁 + 1 ) )
261 peano2re ( 𝑁 ∈ ℝ → ( 𝑁 + 1 ) ∈ ℝ )
262 257 261 syl ( ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( 𝑁 + 1 ) ∈ ℝ )
263 lttr ( ( 𝑦 ∈ ℝ ∧ ( 𝑄 / 2 ) ∈ ℝ ∧ ( 𝑁 + 1 ) ∈ ℝ ) → ( ( 𝑦 < ( 𝑄 / 2 ) ∧ ( 𝑄 / 2 ) < ( 𝑁 + 1 ) ) → 𝑦 < ( 𝑁 + 1 ) ) )
264 209 234 262 263 syl3anc ( ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( ( 𝑦 < ( 𝑄 / 2 ) ∧ ( 𝑄 / 2 ) < ( 𝑁 + 1 ) ) → 𝑦 < ( 𝑁 + 1 ) ) )
265 260 264 mpan2d ( ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( 𝑦 < ( 𝑄 / 2 ) → 𝑦 < ( 𝑁 + 1 ) ) )
266 241 265 syld ( ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( ( 𝑦 · 𝑃 ) < ( 𝑄 · ( 2 · 𝑢 ) ) → 𝑦 < ( 𝑁 + 1 ) ) )
267 nnleltp1 ( ( 𝑦 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑦𝑁𝑦 < ( 𝑁 + 1 ) ) )
268 199 256 267 syl2anc ( ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( 𝑦𝑁𝑦 < ( 𝑁 + 1 ) ) )
269 266 268 sylibrd ( ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( ( 𝑦 · 𝑃 ) < ( 𝑄 · ( 2 · 𝑢 ) ) → 𝑦𝑁 ) )
270 269 pm4.71rd ( ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( ( 𝑦 · 𝑃 ) < ( 𝑄 · ( 2 · 𝑢 ) ) ↔ ( 𝑦𝑁 ∧ ( 𝑦 · 𝑃 ) < ( 𝑄 · ( 2 · 𝑢 ) ) ) ) )
271 92 67 syldan ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) → ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ∈ ℝ )
272 flge ( ( ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ∈ ℝ ∧ 𝑦 ∈ ℤ ) → ( 𝑦 ≤ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ↔ 𝑦 ≤ ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) )
273 271 191 272 syl2an ( ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( 𝑦 ≤ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ↔ 𝑦 ≤ ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) )
274 220 270 273 3bitr3d ( ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( ( 𝑦𝑁 ∧ ( 𝑦 · 𝑃 ) < ( 𝑄 · ( 2 · 𝑢 ) ) ) ↔ 𝑦 ≤ ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) )
275 274 pm5.32da ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) → ( ( 𝑦 ∈ ℕ ∧ ( 𝑦𝑁 ∧ ( 𝑦 · 𝑃 ) < ( 𝑄 · ( 2 · 𝑢 ) ) ) ) ↔ ( 𝑦 ∈ ℕ ∧ 𝑦 ≤ ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) )
276 128 275 syl5bb ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) → ( ( ( 𝑦 ∈ ℕ ∧ 𝑦𝑁 ) ∧ ( 𝑦 · 𝑃 ) < ( 𝑄 · ( 2 · 𝑢 ) ) ) ↔ ( 𝑦 ∈ ℕ ∧ 𝑦 ≤ ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) )
277 276 adantr ( ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑥 = ( 2 · 𝑢 ) ) → ( ( ( 𝑦 ∈ ℕ ∧ 𝑦𝑁 ) ∧ ( 𝑦 · 𝑃 ) < ( 𝑄 · ( 2 · 𝑢 ) ) ) ↔ ( 𝑦 ∈ ℕ ∧ 𝑦 ≤ ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) )
278 simpr ( ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑥 = ( 2 · 𝑢 ) ) → 𝑥 = ( 2 · 𝑢 ) )
279 nnuz ℕ = ( ℤ ‘ 1 )
280 114 279 eleqtrdi ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) → ( 2 · 𝑢 ) ∈ ( ℤ ‘ 1 ) )
281 26 adantr ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) → 𝑀 ∈ ℤ )
282 elfz5 ( ( ( 2 · 𝑢 ) ∈ ( ℤ ‘ 1 ) ∧ 𝑀 ∈ ℤ ) → ( ( 2 · 𝑢 ) ∈ ( 1 ... 𝑀 ) ↔ ( 2 · 𝑢 ) ≤ 𝑀 ) )
283 280 281 282 syl2anc ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) → ( ( 2 · 𝑢 ) ∈ ( 1 ... 𝑀 ) ↔ ( 2 · 𝑢 ) ≤ 𝑀 ) )
284 153 283 mpbird ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) → ( 2 · 𝑢 ) ∈ ( 1 ... 𝑀 ) )
285 284 adantr ( ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑥 = ( 2 · 𝑢 ) ) → ( 2 · 𝑢 ) ∈ ( 1 ... 𝑀 ) )
286 278 285 eqeltrd ( ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑥 = ( 2 · 𝑢 ) ) → 𝑥 ∈ ( 1 ... 𝑀 ) )
287 286 biantrurd ( ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑥 = ( 2 · 𝑢 ) ) → ( 𝑦 ∈ ( 1 ... 𝑁 ) ↔ ( 𝑥 ∈ ( 1 ... 𝑀 ) ∧ 𝑦 ∈ ( 1 ... 𝑁 ) ) ) )
288 255 nnzd ( 𝜑𝑁 ∈ ℤ )
289 288 ad2antrr ( ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑥 = ( 2 · 𝑢 ) ) → 𝑁 ∈ ℤ )
290 fznn ( 𝑁 ∈ ℤ → ( 𝑦 ∈ ( 1 ... 𝑁 ) ↔ ( 𝑦 ∈ ℕ ∧ 𝑦𝑁 ) ) )
291 289 290 syl ( ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑥 = ( 2 · 𝑢 ) ) → ( 𝑦 ∈ ( 1 ... 𝑁 ) ↔ ( 𝑦 ∈ ℕ ∧ 𝑦𝑁 ) ) )
292 287 291 bitr3d ( ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑥 = ( 2 · 𝑢 ) ) → ( ( 𝑥 ∈ ( 1 ... 𝑀 ) ∧ 𝑦 ∈ ( 1 ... 𝑁 ) ) ↔ ( 𝑦 ∈ ℕ ∧ 𝑦𝑁 ) ) )
293 oveq1 ( 𝑥 = ( 2 · 𝑢 ) → ( 𝑥 · 𝑄 ) = ( ( 2 · 𝑢 ) · 𝑄 ) )
294 114 nncnd ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) → ( 2 · 𝑢 ) ∈ ℂ )
295 202 nncnd ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) → 𝑄 ∈ ℂ )
296 294 295 mulcomd ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) → ( ( 2 · 𝑢 ) · 𝑄 ) = ( 𝑄 · ( 2 · 𝑢 ) ) )
297 293 296 sylan9eqr ( ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑥 = ( 2 · 𝑢 ) ) → ( 𝑥 · 𝑄 ) = ( 𝑄 · ( 2 · 𝑢 ) ) )
298 297 breq2d ( ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑥 = ( 2 · 𝑢 ) ) → ( ( 𝑦 · 𝑃 ) < ( 𝑥 · 𝑄 ) ↔ ( 𝑦 · 𝑃 ) < ( 𝑄 · ( 2 · 𝑢 ) ) ) )
299 292 298 anbi12d ( ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑥 = ( 2 · 𝑢 ) ) → ( ( ( 𝑥 ∈ ( 1 ... 𝑀 ) ∧ 𝑦 ∈ ( 1 ... 𝑁 ) ) ∧ ( 𝑦 · 𝑃 ) < ( 𝑥 · 𝑄 ) ) ↔ ( ( 𝑦 ∈ ℕ ∧ 𝑦𝑁 ) ∧ ( 𝑦 · 𝑃 ) < ( 𝑄 · ( 2 · 𝑢 ) ) ) ) )
300 271 flcld ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) → ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ∈ ℤ )
301 fznn ( ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ∈ ℤ → ( 𝑦 ∈ ( 1 ... ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ↔ ( 𝑦 ∈ ℕ ∧ 𝑦 ≤ ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) )
302 300 301 syl ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) → ( 𝑦 ∈ ( 1 ... ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ↔ ( 𝑦 ∈ ℕ ∧ 𝑦 ≤ ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) )
303 302 adantr ( ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑥 = ( 2 · 𝑢 ) ) → ( 𝑦 ∈ ( 1 ... ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ↔ ( 𝑦 ∈ ℕ ∧ 𝑦 ≤ ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) )
304 277 299 303 3bitr4d ( ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑥 = ( 2 · 𝑢 ) ) → ( ( ( 𝑥 ∈ ( 1 ... 𝑀 ) ∧ 𝑦 ∈ ( 1 ... 𝑁 ) ) ∧ ( 𝑦 · 𝑃 ) < ( 𝑥 · 𝑄 ) ) ↔ 𝑦 ∈ ( 1 ... ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) )
305 127 304 syl5bb ( ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑥 = ( 2 · 𝑢 ) ) → ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝑆𝑦 ∈ ( 1 ... ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) )
306 305 pm5.32da ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) → ( ( 𝑥 = ( 2 · 𝑢 ) ∧ ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝑆 ) ↔ ( 𝑥 = ( 2 · 𝑢 ) ∧ 𝑦 ∈ ( 1 ... ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) ) )
307 vex 𝑥 ∈ V
308 vex 𝑦 ∈ V
309 307 308 op1std ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ → ( 1st𝑧 ) = 𝑥 )
310 309 eqeq2d ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ → ( ( 2 · 𝑢 ) = ( 1st𝑧 ) ↔ ( 2 · 𝑢 ) = 𝑥 ) )
311 eqcom ( ( 2 · 𝑢 ) = 𝑥𝑥 = ( 2 · 𝑢 ) )
312 310 311 bitrdi ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ → ( ( 2 · 𝑢 ) = ( 1st𝑧 ) ↔ 𝑥 = ( 2 · 𝑢 ) ) )
313 312 elrab ( ⟨ 𝑥 , 𝑦 ⟩ ∈ { 𝑧𝑆 ∣ ( 2 · 𝑢 ) = ( 1st𝑧 ) } ↔ ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝑆𝑥 = ( 2 · 𝑢 ) ) )
314 313 biancomi ( ⟨ 𝑥 , 𝑦 ⟩ ∈ { 𝑧𝑆 ∣ ( 2 · 𝑢 ) = ( 1st𝑧 ) } ↔ ( 𝑥 = ( 2 · 𝑢 ) ∧ ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝑆 ) )
315 opelxp ( ⟨ 𝑥 , 𝑦 ⟩ ∈ ( { ( 2 · 𝑢 ) } × ( 1 ... ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) ↔ ( 𝑥 ∈ { ( 2 · 𝑢 ) } ∧ 𝑦 ∈ ( 1 ... ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) )
316 velsn ( 𝑥 ∈ { ( 2 · 𝑢 ) } ↔ 𝑥 = ( 2 · 𝑢 ) )
317 316 anbi1i ( ( 𝑥 ∈ { ( 2 · 𝑢 ) } ∧ 𝑦 ∈ ( 1 ... ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) ↔ ( 𝑥 = ( 2 · 𝑢 ) ∧ 𝑦 ∈ ( 1 ... ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) )
318 315 317 bitri ( ⟨ 𝑥 , 𝑦 ⟩ ∈ ( { ( 2 · 𝑢 ) } × ( 1 ... ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) ↔ ( 𝑥 = ( 2 · 𝑢 ) ∧ 𝑦 ∈ ( 1 ... ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) )
319 306 314 318 3bitr4g ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) → ( ⟨ 𝑥 , 𝑦 ⟩ ∈ { 𝑧𝑆 ∣ ( 2 · 𝑢 ) = ( 1st𝑧 ) } ↔ ⟨ 𝑥 , 𝑦 ⟩ ∈ ( { ( 2 · 𝑢 ) } × ( 1 ... ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) ) )
320 123 124 319 eqrelrdv ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) → { 𝑧𝑆 ∣ ( 2 · 𝑢 ) = ( 1st𝑧 ) } = ( { ( 2 · 𝑢 ) } × ( 1 ... ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) )
321 320 eqcomd ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) → ( { ( 2 · 𝑢 ) } × ( 1 ... ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) = { 𝑧𝑆 ∣ ( 2 · 𝑢 ) = ( 1st𝑧 ) } )
322 321 fveq2d ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) → ( ♯ ‘ ( { ( 2 · 𝑢 ) } × ( 1 ... ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) ) = ( ♯ ‘ { 𝑧𝑆 ∣ ( 2 · 𝑢 ) = ( 1st𝑧 ) } ) )
323 hashfz1 ( ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ∈ ℕ0 → ( ♯ ‘ ( 1 ... ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) = ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) )
324 93 323 syl ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) → ( ♯ ‘ ( 1 ... ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) = ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) )
325 119 322 324 3eqtr3rd ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) → ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) = ( ♯ ‘ { 𝑧𝑆 ∣ ( 2 · 𝑢 ) = ( 1st𝑧 ) } ) )
326 325 sumeq2dv ( 𝜑 → Σ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) = Σ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ( ♯ ‘ { 𝑧𝑆 ∣ ( 2 · 𝑢 ) = ( 1st𝑧 ) } ) )
327 102 adantr ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) → 𝑆 ∈ Fin )
328 ssfi ( ( 𝑆 ∈ Fin ∧ { 𝑧𝑆 ∣ ( 2 · 𝑢 ) = ( 1st𝑧 ) } ⊆ 𝑆 ) → { 𝑧𝑆 ∣ ( 2 · 𝑢 ) = ( 1st𝑧 ) } ∈ Fin )
329 327 120 328 sylancl ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) → { 𝑧𝑆 ∣ ( 2 · 𝑢 ) = ( 1st𝑧 ) } ∈ Fin )
330 fveq2 ( 𝑧 = 𝑣 → ( 1st𝑧 ) = ( 1st𝑣 ) )
331 330 eqeq2d ( 𝑧 = 𝑣 → ( ( 2 · 𝑢 ) = ( 1st𝑧 ) ↔ ( 2 · 𝑢 ) = ( 1st𝑣 ) ) )
332 331 elrab ( 𝑣 ∈ { 𝑧𝑆 ∣ ( 2 · 𝑢 ) = ( 1st𝑧 ) } ↔ ( 𝑣𝑆 ∧ ( 2 · 𝑢 ) = ( 1st𝑣 ) ) )
333 332 simprbi ( 𝑣 ∈ { 𝑧𝑆 ∣ ( 2 · 𝑢 ) = ( 1st𝑧 ) } → ( 2 · 𝑢 ) = ( 1st𝑣 ) )
334 333 ad2antll ( ( 𝜑 ∧ ( 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ∧ 𝑣 ∈ { 𝑧𝑆 ∣ ( 2 · 𝑢 ) = ( 1st𝑧 ) } ) ) → ( 2 · 𝑢 ) = ( 1st𝑣 ) )
335 334 oveq1d ( ( 𝜑 ∧ ( 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ∧ 𝑣 ∈ { 𝑧𝑆 ∣ ( 2 · 𝑢 ) = ( 1st𝑧 ) } ) ) → ( ( 2 · 𝑢 ) / 2 ) = ( ( 1st𝑣 ) / 2 ) )
336 145 nncnd ( ( 𝜑𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) → 𝑢 ∈ ℂ )
337 336 adantrr ( ( 𝜑 ∧ ( 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ∧ 𝑣 ∈ { 𝑧𝑆 ∣ ( 2 · 𝑢 ) = ( 1st𝑧 ) } ) ) → 𝑢 ∈ ℂ )
338 2cnd ( ( 𝜑 ∧ ( 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ∧ 𝑣 ∈ { 𝑧𝑆 ∣ ( 2 · 𝑢 ) = ( 1st𝑧 ) } ) ) → 2 ∈ ℂ )
339 227 a1i ( ( 𝜑 ∧ ( 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ∧ 𝑣 ∈ { 𝑧𝑆 ∣ ( 2 · 𝑢 ) = ( 1st𝑧 ) } ) ) → 2 ≠ 0 )
340 337 338 339 divcan3d ( ( 𝜑 ∧ ( 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ∧ 𝑣 ∈ { 𝑧𝑆 ∣ ( 2 · 𝑢 ) = ( 1st𝑧 ) } ) ) → ( ( 2 · 𝑢 ) / 2 ) = 𝑢 )
341 335 340 eqtr3d ( ( 𝜑 ∧ ( 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ∧ 𝑣 ∈ { 𝑧𝑆 ∣ ( 2 · 𝑢 ) = ( 1st𝑧 ) } ) ) → ( ( 1st𝑣 ) / 2 ) = 𝑢 )
342 341 ralrimivva ( 𝜑 → ∀ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ∀ 𝑣 ∈ { 𝑧𝑆 ∣ ( 2 · 𝑢 ) = ( 1st𝑧 ) } ( ( 1st𝑣 ) / 2 ) = 𝑢 )
343 invdisj ( ∀ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ∀ 𝑣 ∈ { 𝑧𝑆 ∣ ( 2 · 𝑢 ) = ( 1st𝑧 ) } ( ( 1st𝑣 ) / 2 ) = 𝑢Disj 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) { 𝑧𝑆 ∣ ( 2 · 𝑢 ) = ( 1st𝑧 ) } )
344 342 343 syl ( 𝜑Disj 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) { 𝑧𝑆 ∣ ( 2 · 𝑢 ) = ( 1st𝑧 ) } )
345 89 329 344 hashiun ( 𝜑 → ( ♯ ‘ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) { 𝑧𝑆 ∣ ( 2 · 𝑢 ) = ( 1st𝑧 ) } ) = Σ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ( ♯ ‘ { 𝑧𝑆 ∣ ( 2 · 𝑢 ) = ( 1st𝑧 ) } ) )
346 iunrab 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) { 𝑧𝑆 ∣ ( 2 · 𝑢 ) = ( 1st𝑧 ) } = { 𝑧𝑆 ∣ ∃ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ( 2 · 𝑢 ) = ( 1st𝑧 ) }
347 2cn 2 ∈ ℂ
348 zcn ( 𝑢 ∈ ℤ → 𝑢 ∈ ℂ )
349 348 adantl ( ( ( 𝜑𝑧𝑆 ) ∧ 𝑢 ∈ ℤ ) → 𝑢 ∈ ℂ )
350 mulcom ( ( 2 ∈ ℂ ∧ 𝑢 ∈ ℂ ) → ( 2 · 𝑢 ) = ( 𝑢 · 2 ) )
351 347 349 350 sylancr ( ( ( 𝜑𝑧𝑆 ) ∧ 𝑢 ∈ ℤ ) → ( 2 · 𝑢 ) = ( 𝑢 · 2 ) )
352 351 eqeq1d ( ( ( 𝜑𝑧𝑆 ) ∧ 𝑢 ∈ ℤ ) → ( ( 2 · 𝑢 ) = ( 1st𝑧 ) ↔ ( 𝑢 · 2 ) = ( 1st𝑧 ) ) )
353 352 rexbidva ( ( 𝜑𝑧𝑆 ) → ( ∃ 𝑢 ∈ ℤ ( 2 · 𝑢 ) = ( 1st𝑧 ) ↔ ∃ 𝑢 ∈ ℤ ( 𝑢 · 2 ) = ( 1st𝑧 ) ) )
354 139 anim1i ( ( 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ∧ ( 2 · 𝑢 ) = ( 1st𝑧 ) ) → ( 𝑢 ∈ ℤ ∧ ( 2 · 𝑢 ) = ( 1st𝑧 ) ) )
355 354 reximi2 ( ∃ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ( 2 · 𝑢 ) = ( 1st𝑧 ) → ∃ 𝑢 ∈ ℤ ( 2 · 𝑢 ) = ( 1st𝑧 ) )
356 simprr ( ( ( 𝜑𝑧𝑆 ) ∧ ( 𝑢 ∈ ℤ ∧ ( 2 · 𝑢 ) = ( 1st𝑧 ) ) ) → ( 2 · 𝑢 ) = ( 1st𝑧 ) )
357 simpr ( ( 𝜑𝑧𝑆 ) → 𝑧𝑆 )
358 100 357 sselid ( ( 𝜑𝑧𝑆 ) → 𝑧 ∈ ( ( 1 ... 𝑀 ) × ( 1 ... 𝑁 ) ) )
359 xp1st ( 𝑧 ∈ ( ( 1 ... 𝑀 ) × ( 1 ... 𝑁 ) ) → ( 1st𝑧 ) ∈ ( 1 ... 𝑀 ) )
360 358 359 syl ( ( 𝜑𝑧𝑆 ) → ( 1st𝑧 ) ∈ ( 1 ... 𝑀 ) )
361 360 adantr ( ( ( 𝜑𝑧𝑆 ) ∧ ( 𝑢 ∈ ℤ ∧ ( 2 · 𝑢 ) = ( 1st𝑧 ) ) ) → ( 1st𝑧 ) ∈ ( 1 ... 𝑀 ) )
362 elfzle2 ( ( 1st𝑧 ) ∈ ( 1 ... 𝑀 ) → ( 1st𝑧 ) ≤ 𝑀 )
363 361 362 syl ( ( ( 𝜑𝑧𝑆 ) ∧ ( 𝑢 ∈ ℤ ∧ ( 2 · 𝑢 ) = ( 1st𝑧 ) ) ) → ( 1st𝑧 ) ≤ 𝑀 )
364 356 363 eqbrtrd ( ( ( 𝜑𝑧𝑆 ) ∧ ( 𝑢 ∈ ℤ ∧ ( 2 · 𝑢 ) = ( 1st𝑧 ) ) ) → ( 2 · 𝑢 ) ≤ 𝑀 )
365 zre ( 𝑢 ∈ ℤ → 𝑢 ∈ ℝ )
366 365 ad2antrl ( ( ( 𝜑𝑧𝑆 ) ∧ ( 𝑢 ∈ ℤ ∧ ( 2 · 𝑢 ) = ( 1st𝑧 ) ) ) → 𝑢 ∈ ℝ )
367 11 ad2antrr ( ( ( 𝜑𝑧𝑆 ) ∧ ( 𝑢 ∈ ℤ ∧ ( 2 · 𝑢 ) = ( 1st𝑧 ) ) ) → 𝑀 ∈ ℝ )
368 147 a1i ( ( ( 𝜑𝑧𝑆 ) ∧ ( 𝑢 ∈ ℤ ∧ ( 2 · 𝑢 ) = ( 1st𝑧 ) ) ) → 2 ∈ ℝ )
369 149 a1i ( ( ( 𝜑𝑧𝑆 ) ∧ ( 𝑢 ∈ ℤ ∧ ( 2 · 𝑢 ) = ( 1st𝑧 ) ) ) → 0 < 2 )
370 366 367 368 369 151 syl112anc ( ( ( 𝜑𝑧𝑆 ) ∧ ( 𝑢 ∈ ℤ ∧ ( 2 · 𝑢 ) = ( 1st𝑧 ) ) ) → ( ( 2 · 𝑢 ) ≤ 𝑀𝑢 ≤ ( 𝑀 / 2 ) ) )
371 364 370 mpbid ( ( ( 𝜑𝑧𝑆 ) ∧ ( 𝑢 ∈ ℤ ∧ ( 2 · 𝑢 ) = ( 1st𝑧 ) ) ) → 𝑢 ≤ ( 𝑀 / 2 ) )
372 12 ad2antrr ( ( ( 𝜑𝑧𝑆 ) ∧ ( 𝑢 ∈ ℤ ∧ ( 2 · 𝑢 ) = ( 1st𝑧 ) ) ) → ( 𝑀 / 2 ) ∈ ℝ )
373 simprl ( ( ( 𝜑𝑧𝑆 ) ∧ ( 𝑢 ∈ ℤ ∧ ( 2 · 𝑢 ) = ( 1st𝑧 ) ) ) → 𝑢 ∈ ℤ )
374 372 373 141 syl2anc ( ( ( 𝜑𝑧𝑆 ) ∧ ( 𝑢 ∈ ℤ ∧ ( 2 · 𝑢 ) = ( 1st𝑧 ) ) ) → ( 𝑢 ≤ ( 𝑀 / 2 ) ↔ 𝑢 ≤ ( ⌊ ‘ ( 𝑀 / 2 ) ) ) )
375 371 374 mpbid ( ( ( 𝜑𝑧𝑆 ) ∧ ( 𝑢 ∈ ℤ ∧ ( 2 · 𝑢 ) = ( 1st𝑧 ) ) ) → 𝑢 ≤ ( ⌊ ‘ ( 𝑀 / 2 ) ) )
376 2t0e0 ( 2 · 0 ) = 0
377 elfznn ( ( 1st𝑧 ) ∈ ( 1 ... 𝑀 ) → ( 1st𝑧 ) ∈ ℕ )
378 361 377 syl ( ( ( 𝜑𝑧𝑆 ) ∧ ( 𝑢 ∈ ℤ ∧ ( 2 · 𝑢 ) = ( 1st𝑧 ) ) ) → ( 1st𝑧 ) ∈ ℕ )
379 356 378 eqeltrd ( ( ( 𝜑𝑧𝑆 ) ∧ ( 𝑢 ∈ ℤ ∧ ( 2 · 𝑢 ) = ( 1st𝑧 ) ) ) → ( 2 · 𝑢 ) ∈ ℕ )
380 379 nngt0d ( ( ( 𝜑𝑧𝑆 ) ∧ ( 𝑢 ∈ ℤ ∧ ( 2 · 𝑢 ) = ( 1st𝑧 ) ) ) → 0 < ( 2 · 𝑢 ) )
381 376 380 eqbrtrid ( ( ( 𝜑𝑧𝑆 ) ∧ ( 𝑢 ∈ ℤ ∧ ( 2 · 𝑢 ) = ( 1st𝑧 ) ) ) → ( 2 · 0 ) < ( 2 · 𝑢 ) )
382 0red ( ( ( 𝜑𝑧𝑆 ) ∧ ( 𝑢 ∈ ℤ ∧ ( 2 · 𝑢 ) = ( 1st𝑧 ) ) ) → 0 ∈ ℝ )
383 ltmul2 ( ( 0 ∈ ℝ ∧ 𝑢 ∈ ℝ ∧ ( 2 ∈ ℝ ∧ 0 < 2 ) ) → ( 0 < 𝑢 ↔ ( 2 · 0 ) < ( 2 · 𝑢 ) ) )
384 382 366 368 369 383 syl112anc ( ( ( 𝜑𝑧𝑆 ) ∧ ( 𝑢 ∈ ℤ ∧ ( 2 · 𝑢 ) = ( 1st𝑧 ) ) ) → ( 0 < 𝑢 ↔ ( 2 · 0 ) < ( 2 · 𝑢 ) ) )
385 381 384 mpbird ( ( ( 𝜑𝑧𝑆 ) ∧ ( 𝑢 ∈ ℤ ∧ ( 2 · 𝑢 ) = ( 1st𝑧 ) ) ) → 0 < 𝑢 )
386 elnnz ( 𝑢 ∈ ℕ ↔ ( 𝑢 ∈ ℤ ∧ 0 < 𝑢 ) )
387 373 385 386 sylanbrc ( ( ( 𝜑𝑧𝑆 ) ∧ ( 𝑢 ∈ ℤ ∧ ( 2 · 𝑢 ) = ( 1st𝑧 ) ) ) → 𝑢 ∈ ℕ )
388 387 279 eleqtrdi ( ( ( 𝜑𝑧𝑆 ) ∧ ( 𝑢 ∈ ℤ ∧ ( 2 · 𝑢 ) = ( 1st𝑧 ) ) ) → 𝑢 ∈ ( ℤ ‘ 1 ) )
389 13 ad2antrr ( ( ( 𝜑𝑧𝑆 ) ∧ ( 𝑢 ∈ ℤ ∧ ( 2 · 𝑢 ) = ( 1st𝑧 ) ) ) → ( ⌊ ‘ ( 𝑀 / 2 ) ) ∈ ℤ )
390 elfz5 ( ( 𝑢 ∈ ( ℤ ‘ 1 ) ∧ ( ⌊ ‘ ( 𝑀 / 2 ) ) ∈ ℤ ) → ( 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ↔ 𝑢 ≤ ( ⌊ ‘ ( 𝑀 / 2 ) ) ) )
391 388 389 390 syl2anc ( ( ( 𝜑𝑧𝑆 ) ∧ ( 𝑢 ∈ ℤ ∧ ( 2 · 𝑢 ) = ( 1st𝑧 ) ) ) → ( 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ↔ 𝑢 ≤ ( ⌊ ‘ ( 𝑀 / 2 ) ) ) )
392 375 391 mpbird ( ( ( 𝜑𝑧𝑆 ) ∧ ( 𝑢 ∈ ℤ ∧ ( 2 · 𝑢 ) = ( 1st𝑧 ) ) ) → 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) )
393 392 356 jca ( ( ( 𝜑𝑧𝑆 ) ∧ ( 𝑢 ∈ ℤ ∧ ( 2 · 𝑢 ) = ( 1st𝑧 ) ) ) → ( 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ∧ ( 2 · 𝑢 ) = ( 1st𝑧 ) ) )
394 393 ex ( ( 𝜑𝑧𝑆 ) → ( ( 𝑢 ∈ ℤ ∧ ( 2 · 𝑢 ) = ( 1st𝑧 ) ) → ( 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ∧ ( 2 · 𝑢 ) = ( 1st𝑧 ) ) ) )
395 394 reximdv2 ( ( 𝜑𝑧𝑆 ) → ( ∃ 𝑢 ∈ ℤ ( 2 · 𝑢 ) = ( 1st𝑧 ) → ∃ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ( 2 · 𝑢 ) = ( 1st𝑧 ) ) )
396 355 395 impbid2 ( ( 𝜑𝑧𝑆 ) → ( ∃ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ( 2 · 𝑢 ) = ( 1st𝑧 ) ↔ ∃ 𝑢 ∈ ℤ ( 2 · 𝑢 ) = ( 1st𝑧 ) ) )
397 2z 2 ∈ ℤ
398 360 elfzelzd ( ( 𝜑𝑧𝑆 ) → ( 1st𝑧 ) ∈ ℤ )
399 divides ( ( 2 ∈ ℤ ∧ ( 1st𝑧 ) ∈ ℤ ) → ( 2 ∥ ( 1st𝑧 ) ↔ ∃ 𝑢 ∈ ℤ ( 𝑢 · 2 ) = ( 1st𝑧 ) ) )
400 397 398 399 sylancr ( ( 𝜑𝑧𝑆 ) → ( 2 ∥ ( 1st𝑧 ) ↔ ∃ 𝑢 ∈ ℤ ( 𝑢 · 2 ) = ( 1st𝑧 ) ) )
401 353 396 400 3bitr4d ( ( 𝜑𝑧𝑆 ) → ( ∃ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ( 2 · 𝑢 ) = ( 1st𝑧 ) ↔ 2 ∥ ( 1st𝑧 ) ) )
402 401 rabbidva ( 𝜑 → { 𝑧𝑆 ∣ ∃ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ( 2 · 𝑢 ) = ( 1st𝑧 ) } = { 𝑧𝑆 ∣ 2 ∥ ( 1st𝑧 ) } )
403 346 402 syl5eq ( 𝜑 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) { 𝑧𝑆 ∣ ( 2 · 𝑢 ) = ( 1st𝑧 ) } = { 𝑧𝑆 ∣ 2 ∥ ( 1st𝑧 ) } )
404 403 fveq2d ( 𝜑 → ( ♯ ‘ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) { 𝑧𝑆 ∣ ( 2 · 𝑢 ) = ( 1st𝑧 ) } ) = ( ♯ ‘ { 𝑧𝑆 ∣ 2 ∥ ( 1st𝑧 ) } ) )
405 326 345 404 3eqtr2d ( 𝜑 → Σ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) = ( ♯ ‘ { 𝑧𝑆 ∣ 2 ∥ ( 1st𝑧 ) } ) )
406 405 oveq2d ( 𝜑 → ( - 1 ↑ Σ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) = ( - 1 ↑ ( ♯ ‘ { 𝑧𝑆 ∣ 2 ∥ ( 1st𝑧 ) } ) ) )
407 1 2 3 4 5 6 lgsquadlem1 ( 𝜑 → ( - 1 ↑ Σ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) = ( - 1 ↑ ( ♯ ‘ { 𝑧𝑆 ∣ ¬ 2 ∥ ( 1st𝑧 ) } ) ) )
408 406 407 oveq12d ( 𝜑 → ( ( - 1 ↑ Σ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) · ( - 1 ↑ Σ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) = ( ( - 1 ↑ ( ♯ ‘ { 𝑧𝑆 ∣ 2 ∥ ( 1st𝑧 ) } ) ) · ( - 1 ↑ ( ♯ ‘ { 𝑧𝑆 ∣ ¬ 2 ∥ ( 1st𝑧 ) } ) ) ) )
409 113 408 eqtr4d ( 𝜑 → ( - 1 ↑ ( ( ♯ ‘ { 𝑧𝑆 ∣ 2 ∥ ( 1st𝑧 ) } ) + ( ♯ ‘ { 𝑧𝑆 ∣ ¬ 2 ∥ ( 1st𝑧 ) } ) ) ) = ( ( - 1 ↑ Σ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) · ( - 1 ↑ Σ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) )
410 inrab ( { 𝑧𝑆 ∣ 2 ∥ ( 1st𝑧 ) } ∩ { 𝑧𝑆 ∣ ¬ 2 ∥ ( 1st𝑧 ) } ) = { 𝑧𝑆 ∣ ( 2 ∥ ( 1st𝑧 ) ∧ ¬ 2 ∥ ( 1st𝑧 ) ) }
411 pm3.24 ¬ ( 2 ∥ ( 1st𝑧 ) ∧ ¬ 2 ∥ ( 1st𝑧 ) )
412 411 a1i ( 𝜑 → ¬ ( 2 ∥ ( 1st𝑧 ) ∧ ¬ 2 ∥ ( 1st𝑧 ) ) )
413 412 ralrimivw ( 𝜑 → ∀ 𝑧𝑆 ¬ ( 2 ∥ ( 1st𝑧 ) ∧ ¬ 2 ∥ ( 1st𝑧 ) ) )
414 rabeq0 ( { 𝑧𝑆 ∣ ( 2 ∥ ( 1st𝑧 ) ∧ ¬ 2 ∥ ( 1st𝑧 ) ) } = ∅ ↔ ∀ 𝑧𝑆 ¬ ( 2 ∥ ( 1st𝑧 ) ∧ ¬ 2 ∥ ( 1st𝑧 ) ) )
415 413 414 sylibr ( 𝜑 → { 𝑧𝑆 ∣ ( 2 ∥ ( 1st𝑧 ) ∧ ¬ 2 ∥ ( 1st𝑧 ) ) } = ∅ )
416 410 415 syl5eq ( 𝜑 → ( { 𝑧𝑆 ∣ 2 ∥ ( 1st𝑧 ) } ∩ { 𝑧𝑆 ∣ ¬ 2 ∥ ( 1st𝑧 ) } ) = ∅ )
417 hashun ( ( { 𝑧𝑆 ∣ 2 ∥ ( 1st𝑧 ) } ∈ Fin ∧ { 𝑧𝑆 ∣ ¬ 2 ∥ ( 1st𝑧 ) } ∈ Fin ∧ ( { 𝑧𝑆 ∣ 2 ∥ ( 1st𝑧 ) } ∩ { 𝑧𝑆 ∣ ¬ 2 ∥ ( 1st𝑧 ) } ) = ∅ ) → ( ♯ ‘ ( { 𝑧𝑆 ∣ 2 ∥ ( 1st𝑧 ) } ∪ { 𝑧𝑆 ∣ ¬ 2 ∥ ( 1st𝑧 ) } ) ) = ( ( ♯ ‘ { 𝑧𝑆 ∣ 2 ∥ ( 1st𝑧 ) } ) + ( ♯ ‘ { 𝑧𝑆 ∣ ¬ 2 ∥ ( 1st𝑧 ) } ) ) )
418 110 105 416 417 syl3anc ( 𝜑 → ( ♯ ‘ ( { 𝑧𝑆 ∣ 2 ∥ ( 1st𝑧 ) } ∪ { 𝑧𝑆 ∣ ¬ 2 ∥ ( 1st𝑧 ) } ) ) = ( ( ♯ ‘ { 𝑧𝑆 ∣ 2 ∥ ( 1st𝑧 ) } ) + ( ♯ ‘ { 𝑧𝑆 ∣ ¬ 2 ∥ ( 1st𝑧 ) } ) ) )
419 unrab ( { 𝑧𝑆 ∣ 2 ∥ ( 1st𝑧 ) } ∪ { 𝑧𝑆 ∣ ¬ 2 ∥ ( 1st𝑧 ) } ) = { 𝑧𝑆 ∣ ( 2 ∥ ( 1st𝑧 ) ∨ ¬ 2 ∥ ( 1st𝑧 ) ) }
420 exmid ( 2 ∥ ( 1st𝑧 ) ∨ ¬ 2 ∥ ( 1st𝑧 ) )
421 420 rgenw 𝑧𝑆 ( 2 ∥ ( 1st𝑧 ) ∨ ¬ 2 ∥ ( 1st𝑧 ) )
422 rabid2 ( 𝑆 = { 𝑧𝑆 ∣ ( 2 ∥ ( 1st𝑧 ) ∨ ¬ 2 ∥ ( 1st𝑧 ) ) } ↔ ∀ 𝑧𝑆 ( 2 ∥ ( 1st𝑧 ) ∨ ¬ 2 ∥ ( 1st𝑧 ) ) )
423 421 422 mpbir 𝑆 = { 𝑧𝑆 ∣ ( 2 ∥ ( 1st𝑧 ) ∨ ¬ 2 ∥ ( 1st𝑧 ) ) }
424 419 423 eqtr4i ( { 𝑧𝑆 ∣ 2 ∥ ( 1st𝑧 ) } ∪ { 𝑧𝑆 ∣ ¬ 2 ∥ ( 1st𝑧 ) } ) = 𝑆
425 424 fveq2i ( ♯ ‘ ( { 𝑧𝑆 ∣ 2 ∥ ( 1st𝑧 ) } ∪ { 𝑧𝑆 ∣ ¬ 2 ∥ ( 1st𝑧 ) } ) ) = ( ♯ ‘ 𝑆 )
426 418 425 eqtr3di ( 𝜑 → ( ( ♯ ‘ { 𝑧𝑆 ∣ 2 ∥ ( 1st𝑧 ) } ) + ( ♯ ‘ { 𝑧𝑆 ∣ ¬ 2 ∥ ( 1st𝑧 ) } ) ) = ( ♯ ‘ 𝑆 ) )
427 426 oveq2d ( 𝜑 → ( - 1 ↑ ( ( ♯ ‘ { 𝑧𝑆 ∣ 2 ∥ ( 1st𝑧 ) } ) + ( ♯ ‘ { 𝑧𝑆 ∣ ¬ 2 ∥ ( 1st𝑧 ) } ) ) ) = ( - 1 ↑ ( ♯ ‘ 𝑆 ) ) )
428 95 409 427 3eqtr2d ( 𝜑 → ( - 1 ↑ ( Σ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) + Σ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) = ( - 1 ↑ ( ♯ ‘ 𝑆 ) ) )
429 7 80 428 3eqtrd ( 𝜑 → ( 𝑄 /L 𝑃 ) = ( - 1 ↑ ( ♯ ‘ 𝑆 ) ) )