| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simp1 | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℕ  ∧  ( 𝐴  gcd  𝑁 )  =  1 )  →  𝐴  ∈  ℤ ) | 
						
							| 2 |  | nnz | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ℤ ) | 
						
							| 3 | 2 | 3ad2ant2 | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℕ  ∧  ( 𝐴  gcd  𝑁 )  =  1 )  →  𝑁  ∈  ℤ ) | 
						
							| 4 |  | nnne0 | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ≠  0 ) | 
						
							| 5 | 4 | 3ad2ant2 | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℕ  ∧  ( 𝐴  gcd  𝑁 )  =  1 )  →  𝑁  ≠  0 ) | 
						
							| 6 |  | lgsdi | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  ( 𝑁  ≠  0  ∧  𝑁  ≠  0 ) )  →  ( 𝐴  /L  ( 𝑁  ·  𝑁 ) )  =  ( ( 𝐴  /L  𝑁 )  ·  ( 𝐴  /L  𝑁 ) ) ) | 
						
							| 7 | 1 3 3 5 5 6 | syl32anc | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℕ  ∧  ( 𝐴  gcd  𝑁 )  =  1 )  →  ( 𝐴  /L  ( 𝑁  ·  𝑁 ) )  =  ( ( 𝐴  /L  𝑁 )  ·  ( 𝐴  /L  𝑁 ) ) ) | 
						
							| 8 |  | nncn | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ℂ ) | 
						
							| 9 | 8 | 3ad2ant2 | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℕ  ∧  ( 𝐴  gcd  𝑁 )  =  1 )  →  𝑁  ∈  ℂ ) | 
						
							| 10 | 9 | sqvald | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℕ  ∧  ( 𝐴  gcd  𝑁 )  =  1 )  →  ( 𝑁 ↑ 2 )  =  ( 𝑁  ·  𝑁 ) ) | 
						
							| 11 | 10 | oveq2d | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℕ  ∧  ( 𝐴  gcd  𝑁 )  =  1 )  →  ( 𝐴  /L  ( 𝑁 ↑ 2 ) )  =  ( 𝐴  /L  ( 𝑁  ·  𝑁 ) ) ) | 
						
							| 12 |  | lgscl | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝐴  /L  𝑁 )  ∈  ℤ ) | 
						
							| 13 | 1 3 12 | syl2anc | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℕ  ∧  ( 𝐴  gcd  𝑁 )  =  1 )  →  ( 𝐴  /L  𝑁 )  ∈  ℤ ) | 
						
							| 14 | 13 | zred | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℕ  ∧  ( 𝐴  gcd  𝑁 )  =  1 )  →  ( 𝐴  /L  𝑁 )  ∈  ℝ ) | 
						
							| 15 |  | absresq | ⊢ ( ( 𝐴  /L  𝑁 )  ∈  ℝ  →  ( ( abs ‘ ( 𝐴  /L  𝑁 ) ) ↑ 2 )  =  ( ( 𝐴  /L  𝑁 ) ↑ 2 ) ) | 
						
							| 16 | 14 15 | syl | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℕ  ∧  ( 𝐴  gcd  𝑁 )  =  1 )  →  ( ( abs ‘ ( 𝐴  /L  𝑁 ) ) ↑ 2 )  =  ( ( 𝐴  /L  𝑁 ) ↑ 2 ) ) | 
						
							| 17 |  | lgsabs1 | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( ( abs ‘ ( 𝐴  /L  𝑁 ) )  =  1  ↔  ( 𝐴  gcd  𝑁 )  =  1 ) ) | 
						
							| 18 | 2 17 | sylan2 | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℕ )  →  ( ( abs ‘ ( 𝐴  /L  𝑁 ) )  =  1  ↔  ( 𝐴  gcd  𝑁 )  =  1 ) ) | 
						
							| 19 | 18 | biimp3ar | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℕ  ∧  ( 𝐴  gcd  𝑁 )  =  1 )  →  ( abs ‘ ( 𝐴  /L  𝑁 ) )  =  1 ) | 
						
							| 20 | 19 | oveq1d | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℕ  ∧  ( 𝐴  gcd  𝑁 )  =  1 )  →  ( ( abs ‘ ( 𝐴  /L  𝑁 ) ) ↑ 2 )  =  ( 1 ↑ 2 ) ) | 
						
							| 21 |  | sq1 | ⊢ ( 1 ↑ 2 )  =  1 | 
						
							| 22 | 20 21 | eqtrdi | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℕ  ∧  ( 𝐴  gcd  𝑁 )  =  1 )  →  ( ( abs ‘ ( 𝐴  /L  𝑁 ) ) ↑ 2 )  =  1 ) | 
						
							| 23 | 13 | zcnd | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℕ  ∧  ( 𝐴  gcd  𝑁 )  =  1 )  →  ( 𝐴  /L  𝑁 )  ∈  ℂ ) | 
						
							| 24 | 23 | sqvald | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℕ  ∧  ( 𝐴  gcd  𝑁 )  =  1 )  →  ( ( 𝐴  /L  𝑁 ) ↑ 2 )  =  ( ( 𝐴  /L  𝑁 )  ·  ( 𝐴  /L  𝑁 ) ) ) | 
						
							| 25 | 16 22 24 | 3eqtr3d | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℕ  ∧  ( 𝐴  gcd  𝑁 )  =  1 )  →  1  =  ( ( 𝐴  /L  𝑁 )  ·  ( 𝐴  /L  𝑁 ) ) ) | 
						
							| 26 | 7 11 25 | 3eqtr4d | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℕ  ∧  ( 𝐴  gcd  𝑁 )  =  1 )  →  ( 𝐴  /L  ( 𝑁 ↑ 2 ) )  =  1 ) |