Metamath Proof Explorer


Theorem lgsval4a

Description: Same as lgsval4 for positive N . (Contributed by Mario Carneiro, 4-Feb-2015)

Ref Expression
Hypothesis lgsval4.1 𝐹 = ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ ℙ , ( ( 𝐴 /L 𝑛 ) ↑ ( 𝑛 pCnt 𝑁 ) ) , 1 ) )
Assertion lgsval4a ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( 𝐴 /L 𝑁 ) = ( seq 1 ( · , 𝐹 ) ‘ 𝑁 ) )

Proof

Step Hyp Ref Expression
1 lgsval4.1 𝐹 = ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ ℙ , ( ( 𝐴 /L 𝑛 ) ↑ ( 𝑛 pCnt 𝑁 ) ) , 1 ) )
2 simpl ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → 𝐴 ∈ ℤ )
3 nnz ( 𝑁 ∈ ℕ → 𝑁 ∈ ℤ )
4 3 adantl ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → 𝑁 ∈ ℤ )
5 nnne0 ( 𝑁 ∈ ℕ → 𝑁 ≠ 0 )
6 5 adantl ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → 𝑁 ≠ 0 )
7 1 lgsval4 ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) → ( 𝐴 /L 𝑁 ) = ( if ( ( 𝑁 < 0 ∧ 𝐴 < 0 ) , - 1 , 1 ) · ( seq 1 ( · , 𝐹 ) ‘ ( abs ‘ 𝑁 ) ) ) )
8 2 4 6 7 syl3anc ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( 𝐴 /L 𝑁 ) = ( if ( ( 𝑁 < 0 ∧ 𝐴 < 0 ) , - 1 , 1 ) · ( seq 1 ( · , 𝐹 ) ‘ ( abs ‘ 𝑁 ) ) ) )
9 nngt0 ( 𝑁 ∈ ℕ → 0 < 𝑁 )
10 9 adantl ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → 0 < 𝑁 )
11 0re 0 ∈ ℝ
12 nnre ( 𝑁 ∈ ℕ → 𝑁 ∈ ℝ )
13 12 adantl ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → 𝑁 ∈ ℝ )
14 ltnsym ( ( 0 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( 0 < 𝑁 → ¬ 𝑁 < 0 ) )
15 11 13 14 sylancr ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( 0 < 𝑁 → ¬ 𝑁 < 0 ) )
16 10 15 mpd ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ¬ 𝑁 < 0 )
17 16 intnanrd ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ¬ ( 𝑁 < 0 ∧ 𝐴 < 0 ) )
18 17 iffalsed ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → if ( ( 𝑁 < 0 ∧ 𝐴 < 0 ) , - 1 , 1 ) = 1 )
19 nnnn0 ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ0 )
20 19 adantl ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → 𝑁 ∈ ℕ0 )
21 20 nn0ge0d ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → 0 ≤ 𝑁 )
22 13 21 absidd ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( abs ‘ 𝑁 ) = 𝑁 )
23 22 fveq2d ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( seq 1 ( · , 𝐹 ) ‘ ( abs ‘ 𝑁 ) ) = ( seq 1 ( · , 𝐹 ) ‘ 𝑁 ) )
24 18 23 oveq12d ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( if ( ( 𝑁 < 0 ∧ 𝐴 < 0 ) , - 1 , 1 ) · ( seq 1 ( · , 𝐹 ) ‘ ( abs ‘ 𝑁 ) ) ) = ( 1 · ( seq 1 ( · , 𝐹 ) ‘ 𝑁 ) ) )
25 simpr ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → 𝑁 ∈ ℕ )
26 nnuz ℕ = ( ℤ ‘ 1 )
27 25 26 eleqtrdi ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → 𝑁 ∈ ( ℤ ‘ 1 ) )
28 1 lgsfcl3 ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) → 𝐹 : ℕ ⟶ ℤ )
29 2 4 6 28 syl3anc ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → 𝐹 : ℕ ⟶ ℤ )
30 elfznn ( 𝑥 ∈ ( 1 ... 𝑁 ) → 𝑥 ∈ ℕ )
31 ffvelrn ( ( 𝐹 : ℕ ⟶ ℤ ∧ 𝑥 ∈ ℕ ) → ( 𝐹𝑥 ) ∈ ℤ )
32 29 30 31 syl2an ( ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ 𝑥 ∈ ( 1 ... 𝑁 ) ) → ( 𝐹𝑥 ) ∈ ℤ )
33 zmulcl ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) → ( 𝑥 · 𝑦 ) ∈ ℤ )
34 33 adantl ( ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( 𝑥 · 𝑦 ) ∈ ℤ )
35 27 32 34 seqcl ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( seq 1 ( · , 𝐹 ) ‘ 𝑁 ) ∈ ℤ )
36 35 zcnd ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( seq 1 ( · , 𝐹 ) ‘ 𝑁 ) ∈ ℂ )
37 36 mulid2d ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( 1 · ( seq 1 ( · , 𝐹 ) ‘ 𝑁 ) ) = ( seq 1 ( · , 𝐹 ) ‘ 𝑁 ) )
38 8 24 37 3eqtrd ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( 𝐴 /L 𝑁 ) = ( seq 1 ( · , 𝐹 ) ‘ 𝑁 ) )