Step |
Hyp |
Ref |
Expression |
1 |
|
lgsval4.1 |
⊢ 𝐹 = ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ ℙ , ( ( 𝐴 /L 𝑛 ) ↑ ( 𝑛 pCnt 𝑁 ) ) , 1 ) ) |
2 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → 𝐴 ∈ ℤ ) |
3 |
|
nnz |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℤ ) |
4 |
3
|
adantl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → 𝑁 ∈ ℤ ) |
5 |
|
nnne0 |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ≠ 0 ) |
6 |
5
|
adantl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → 𝑁 ≠ 0 ) |
7 |
1
|
lgsval4 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) → ( 𝐴 /L 𝑁 ) = ( if ( ( 𝑁 < 0 ∧ 𝐴 < 0 ) , - 1 , 1 ) · ( seq 1 ( · , 𝐹 ) ‘ ( abs ‘ 𝑁 ) ) ) ) |
8 |
2 4 6 7
|
syl3anc |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( 𝐴 /L 𝑁 ) = ( if ( ( 𝑁 < 0 ∧ 𝐴 < 0 ) , - 1 , 1 ) · ( seq 1 ( · , 𝐹 ) ‘ ( abs ‘ 𝑁 ) ) ) ) |
9 |
|
nngt0 |
⊢ ( 𝑁 ∈ ℕ → 0 < 𝑁 ) |
10 |
9
|
adantl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → 0 < 𝑁 ) |
11 |
|
0re |
⊢ 0 ∈ ℝ |
12 |
|
nnre |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℝ ) |
13 |
12
|
adantl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → 𝑁 ∈ ℝ ) |
14 |
|
ltnsym |
⊢ ( ( 0 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( 0 < 𝑁 → ¬ 𝑁 < 0 ) ) |
15 |
11 13 14
|
sylancr |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( 0 < 𝑁 → ¬ 𝑁 < 0 ) ) |
16 |
10 15
|
mpd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ¬ 𝑁 < 0 ) |
17 |
16
|
intnanrd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ¬ ( 𝑁 < 0 ∧ 𝐴 < 0 ) ) |
18 |
17
|
iffalsed |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → if ( ( 𝑁 < 0 ∧ 𝐴 < 0 ) , - 1 , 1 ) = 1 ) |
19 |
|
nnnn0 |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ0 ) |
20 |
19
|
adantl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → 𝑁 ∈ ℕ0 ) |
21 |
20
|
nn0ge0d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → 0 ≤ 𝑁 ) |
22 |
13 21
|
absidd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( abs ‘ 𝑁 ) = 𝑁 ) |
23 |
22
|
fveq2d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( seq 1 ( · , 𝐹 ) ‘ ( abs ‘ 𝑁 ) ) = ( seq 1 ( · , 𝐹 ) ‘ 𝑁 ) ) |
24 |
18 23
|
oveq12d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( if ( ( 𝑁 < 0 ∧ 𝐴 < 0 ) , - 1 , 1 ) · ( seq 1 ( · , 𝐹 ) ‘ ( abs ‘ 𝑁 ) ) ) = ( 1 · ( seq 1 ( · , 𝐹 ) ‘ 𝑁 ) ) ) |
25 |
|
simpr |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → 𝑁 ∈ ℕ ) |
26 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
27 |
25 26
|
eleqtrdi |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → 𝑁 ∈ ( ℤ≥ ‘ 1 ) ) |
28 |
1
|
lgsfcl3 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) → 𝐹 : ℕ ⟶ ℤ ) |
29 |
2 4 6 28
|
syl3anc |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → 𝐹 : ℕ ⟶ ℤ ) |
30 |
|
elfznn |
⊢ ( 𝑥 ∈ ( 1 ... 𝑁 ) → 𝑥 ∈ ℕ ) |
31 |
|
ffvelrn |
⊢ ( ( 𝐹 : ℕ ⟶ ℤ ∧ 𝑥 ∈ ℕ ) → ( 𝐹 ‘ 𝑥 ) ∈ ℤ ) |
32 |
29 30 31
|
syl2an |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ 𝑥 ∈ ( 1 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℤ ) |
33 |
|
zmulcl |
⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) → ( 𝑥 · 𝑦 ) ∈ ℤ ) |
34 |
33
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( 𝑥 · 𝑦 ) ∈ ℤ ) |
35 |
27 32 34
|
seqcl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( seq 1 ( · , 𝐹 ) ‘ 𝑁 ) ∈ ℤ ) |
36 |
35
|
zcnd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( seq 1 ( · , 𝐹 ) ‘ 𝑁 ) ∈ ℂ ) |
37 |
36
|
mulid2d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( 1 · ( seq 1 ( · , 𝐹 ) ‘ 𝑁 ) ) = ( seq 1 ( · , 𝐹 ) ‘ 𝑁 ) ) |
38 |
8 24 37
|
3eqtrd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( 𝐴 /L 𝑁 ) = ( seq 1 ( · , 𝐹 ) ‘ 𝑁 ) ) |