| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lhp0lt.s | ⊢  <   =  ( lt ‘ 𝐾 ) | 
						
							| 2 |  | lhp0lt.z | ⊢  0   =  ( 0. ‘ 𝐾 ) | 
						
							| 3 |  | lhp0lt.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 4 |  | eqid | ⊢ ( Atoms ‘ 𝐾 )  =  ( Atoms ‘ 𝐾 ) | 
						
							| 5 | 1 4 3 | lhpexlt | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  →  ∃ 𝑝  ∈  ( Atoms ‘ 𝐾 ) 𝑝  <  𝑊 ) | 
						
							| 6 |  | simp1l | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝑝  ∈  ( Atoms ‘ 𝐾 )  ∧  𝑝  <  𝑊 )  →  𝐾  ∈  HL ) | 
						
							| 7 |  | hlop | ⊢ ( 𝐾  ∈  HL  →  𝐾  ∈  OP ) | 
						
							| 8 |  | eqid | ⊢ ( Base ‘ 𝐾 )  =  ( Base ‘ 𝐾 ) | 
						
							| 9 | 8 2 | op0cl | ⊢ ( 𝐾  ∈  OP  →   0   ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 10 | 6 7 9 | 3syl | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝑝  ∈  ( Atoms ‘ 𝐾 )  ∧  𝑝  <  𝑊 )  →   0   ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 11 | 8 4 | atbase | ⊢ ( 𝑝  ∈  ( Atoms ‘ 𝐾 )  →  𝑝  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 12 | 11 | 3ad2ant2 | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝑝  ∈  ( Atoms ‘ 𝐾 )  ∧  𝑝  <  𝑊 )  →  𝑝  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 13 |  | simp2 | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝑝  ∈  ( Atoms ‘ 𝐾 )  ∧  𝑝  <  𝑊 )  →  𝑝  ∈  ( Atoms ‘ 𝐾 ) ) | 
						
							| 14 |  | eqid | ⊢ (  ⋖  ‘ 𝐾 )  =  (  ⋖  ‘ 𝐾 ) | 
						
							| 15 | 2 14 4 | atcvr0 | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑝  ∈  ( Atoms ‘ 𝐾 ) )  →   0  (  ⋖  ‘ 𝐾 ) 𝑝 ) | 
						
							| 16 | 6 13 15 | syl2anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝑝  ∈  ( Atoms ‘ 𝐾 )  ∧  𝑝  <  𝑊 )  →   0  (  ⋖  ‘ 𝐾 ) 𝑝 ) | 
						
							| 17 | 8 1 14 | cvrlt | ⊢ ( ( ( 𝐾  ∈  HL  ∧   0   ∈  ( Base ‘ 𝐾 )  ∧  𝑝  ∈  ( Base ‘ 𝐾 ) )  ∧   0  (  ⋖  ‘ 𝐾 ) 𝑝 )  →   0   <  𝑝 ) | 
						
							| 18 | 6 10 12 16 17 | syl31anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝑝  ∈  ( Atoms ‘ 𝐾 )  ∧  𝑝  <  𝑊 )  →   0   <  𝑝 ) | 
						
							| 19 |  | simp3 | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝑝  ∈  ( Atoms ‘ 𝐾 )  ∧  𝑝  <  𝑊 )  →  𝑝  <  𝑊 ) | 
						
							| 20 |  | hlpos | ⊢ ( 𝐾  ∈  HL  →  𝐾  ∈  Poset ) | 
						
							| 21 | 6 20 | syl | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝑝  ∈  ( Atoms ‘ 𝐾 )  ∧  𝑝  <  𝑊 )  →  𝐾  ∈  Poset ) | 
						
							| 22 |  | simp1r | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝑝  ∈  ( Atoms ‘ 𝐾 )  ∧  𝑝  <  𝑊 )  →  𝑊  ∈  𝐻 ) | 
						
							| 23 | 8 3 | lhpbase | ⊢ ( 𝑊  ∈  𝐻  →  𝑊  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 24 | 22 23 | syl | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝑝  ∈  ( Atoms ‘ 𝐾 )  ∧  𝑝  <  𝑊 )  →  𝑊  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 25 | 8 1 | plttr | ⊢ ( ( 𝐾  ∈  Poset  ∧  (  0   ∈  ( Base ‘ 𝐾 )  ∧  𝑝  ∈  ( Base ‘ 𝐾 )  ∧  𝑊  ∈  ( Base ‘ 𝐾 ) ) )  →  ( (  0   <  𝑝  ∧  𝑝  <  𝑊 )  →   0   <  𝑊 ) ) | 
						
							| 26 | 21 10 12 24 25 | syl13anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝑝  ∈  ( Atoms ‘ 𝐾 )  ∧  𝑝  <  𝑊 )  →  ( (  0   <  𝑝  ∧  𝑝  <  𝑊 )  →   0   <  𝑊 ) ) | 
						
							| 27 | 18 19 26 | mp2and | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝑝  ∈  ( Atoms ‘ 𝐾 )  ∧  𝑝  <  𝑊 )  →   0   <  𝑊 ) | 
						
							| 28 | 27 | rexlimdv3a | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  →  ( ∃ 𝑝  ∈  ( Atoms ‘ 𝐾 ) 𝑝  <  𝑊  →   0   <  𝑊 ) ) | 
						
							| 29 | 5 28 | mpd | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  →   0   <  𝑊 ) |