Step |
Hyp |
Ref |
Expression |
1 |
|
lhp0lt.s |
⊢ < = ( lt ‘ 𝐾 ) |
2 |
|
lhp0lt.z |
⊢ 0 = ( 0. ‘ 𝐾 ) |
3 |
|
lhp0lt.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
4 |
|
eqid |
⊢ ( Atoms ‘ 𝐾 ) = ( Atoms ‘ 𝐾 ) |
5 |
1 4 3
|
lhpexlt |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ∃ 𝑝 ∈ ( Atoms ‘ 𝐾 ) 𝑝 < 𝑊 ) |
6 |
|
simp1l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑝 < 𝑊 ) → 𝐾 ∈ HL ) |
7 |
|
hlop |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ OP ) |
8 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
9 |
8 2
|
op0cl |
⊢ ( 𝐾 ∈ OP → 0 ∈ ( Base ‘ 𝐾 ) ) |
10 |
6 7 9
|
3syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑝 < 𝑊 ) → 0 ∈ ( Base ‘ 𝐾 ) ) |
11 |
8 4
|
atbase |
⊢ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) → 𝑝 ∈ ( Base ‘ 𝐾 ) ) |
12 |
11
|
3ad2ant2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑝 < 𝑊 ) → 𝑝 ∈ ( Base ‘ 𝐾 ) ) |
13 |
|
simp2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑝 < 𝑊 ) → 𝑝 ∈ ( Atoms ‘ 𝐾 ) ) |
14 |
|
eqid |
⊢ ( ⋖ ‘ 𝐾 ) = ( ⋖ ‘ 𝐾 ) |
15 |
2 14 4
|
atcvr0 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ) → 0 ( ⋖ ‘ 𝐾 ) 𝑝 ) |
16 |
6 13 15
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑝 < 𝑊 ) → 0 ( ⋖ ‘ 𝐾 ) 𝑝 ) |
17 |
8 1 14
|
cvrlt |
⊢ ( ( ( 𝐾 ∈ HL ∧ 0 ∈ ( Base ‘ 𝐾 ) ∧ 𝑝 ∈ ( Base ‘ 𝐾 ) ) ∧ 0 ( ⋖ ‘ 𝐾 ) 𝑝 ) → 0 < 𝑝 ) |
18 |
6 10 12 16 17
|
syl31anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑝 < 𝑊 ) → 0 < 𝑝 ) |
19 |
|
simp3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑝 < 𝑊 ) → 𝑝 < 𝑊 ) |
20 |
|
hlpos |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ Poset ) |
21 |
6 20
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑝 < 𝑊 ) → 𝐾 ∈ Poset ) |
22 |
|
simp1r |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑝 < 𝑊 ) → 𝑊 ∈ 𝐻 ) |
23 |
8 3
|
lhpbase |
⊢ ( 𝑊 ∈ 𝐻 → 𝑊 ∈ ( Base ‘ 𝐾 ) ) |
24 |
22 23
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑝 < 𝑊 ) → 𝑊 ∈ ( Base ‘ 𝐾 ) ) |
25 |
8 1
|
plttr |
⊢ ( ( 𝐾 ∈ Poset ∧ ( 0 ∈ ( Base ‘ 𝐾 ) ∧ 𝑝 ∈ ( Base ‘ 𝐾 ) ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ) ) → ( ( 0 < 𝑝 ∧ 𝑝 < 𝑊 ) → 0 < 𝑊 ) ) |
26 |
21 10 12 24 25
|
syl13anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑝 < 𝑊 ) → ( ( 0 < 𝑝 ∧ 𝑝 < 𝑊 ) → 0 < 𝑊 ) ) |
27 |
18 19 26
|
mp2and |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑝 < 𝑊 ) → 0 < 𝑊 ) |
28 |
27
|
rexlimdv3a |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( ∃ 𝑝 ∈ ( Atoms ‘ 𝐾 ) 𝑝 < 𝑊 → 0 < 𝑊 ) ) |
29 |
5 28
|
mpd |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → 0 < 𝑊 ) |