Step |
Hyp |
Ref |
Expression |
1 |
|
lhp2at0.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
2 |
|
lhp2at0.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
3 |
|
lhp2at0.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
4 |
|
lhp2at0.z |
⊢ 0 = ( 0. ‘ 𝐾 ) |
5 |
|
lhp2at0.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
6 |
|
lhp2at0.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
7 |
|
simp11l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑈 ≠ 𝑉 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) → 𝐾 ∈ HL ) |
8 |
|
hlol |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ OL ) |
9 |
7 8
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑈 ≠ 𝑉 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) → 𝐾 ∈ OL ) |
10 |
|
simp12l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑈 ≠ 𝑉 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) → 𝑃 ∈ 𝐴 ) |
11 |
|
simp2l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑈 ≠ 𝑉 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) → 𝑈 ∈ 𝐴 ) |
12 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
13 |
12 2 5
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) → ( 𝑃 ∨ 𝑈 ) ∈ ( Base ‘ 𝐾 ) ) |
14 |
7 10 11 13
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑈 ≠ 𝑉 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) → ( 𝑃 ∨ 𝑈 ) ∈ ( Base ‘ 𝐾 ) ) |
15 |
|
simp11r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑈 ≠ 𝑉 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) → 𝑊 ∈ 𝐻 ) |
16 |
12 6
|
lhpbase |
⊢ ( 𝑊 ∈ 𝐻 → 𝑊 ∈ ( Base ‘ 𝐾 ) ) |
17 |
15 16
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑈 ≠ 𝑉 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) → 𝑊 ∈ ( Base ‘ 𝐾 ) ) |
18 |
|
simp3l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑈 ≠ 𝑉 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) → 𝑉 ∈ 𝐴 ) |
19 |
12 5
|
atbase |
⊢ ( 𝑉 ∈ 𝐴 → 𝑉 ∈ ( Base ‘ 𝐾 ) ) |
20 |
18 19
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑈 ≠ 𝑉 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) → 𝑉 ∈ ( Base ‘ 𝐾 ) ) |
21 |
12 3
|
latmassOLD |
⊢ ( ( 𝐾 ∈ OL ∧ ( ( 𝑃 ∨ 𝑈 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ∧ 𝑉 ∈ ( Base ‘ 𝐾 ) ) ) → ( ( ( 𝑃 ∨ 𝑈 ) ∧ 𝑊 ) ∧ 𝑉 ) = ( ( 𝑃 ∨ 𝑈 ) ∧ ( 𝑊 ∧ 𝑉 ) ) ) |
22 |
9 14 17 20 21
|
syl13anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑈 ≠ 𝑉 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) → ( ( ( 𝑃 ∨ 𝑈 ) ∧ 𝑊 ) ∧ 𝑉 ) = ( ( 𝑃 ∨ 𝑈 ) ∧ ( 𝑊 ∧ 𝑉 ) ) ) |
23 |
1 3 4 5 6
|
lhpmat |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( 𝑃 ∧ 𝑊 ) = 0 ) |
24 |
23
|
3adant3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑈 ≠ 𝑉 ) → ( 𝑃 ∧ 𝑊 ) = 0 ) |
25 |
24
|
3ad2ant1 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑈 ≠ 𝑉 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) → ( 𝑃 ∧ 𝑊 ) = 0 ) |
26 |
25
|
oveq1d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑈 ≠ 𝑉 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) → ( ( 𝑃 ∧ 𝑊 ) ∨ 𝑈 ) = ( 0 ∨ 𝑈 ) ) |
27 |
12 5
|
atbase |
⊢ ( 𝑈 ∈ 𝐴 → 𝑈 ∈ ( Base ‘ 𝐾 ) ) |
28 |
11 27
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑈 ≠ 𝑉 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) → 𝑈 ∈ ( Base ‘ 𝐾 ) ) |
29 |
|
simp2r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑈 ≠ 𝑉 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) → 𝑈 ≤ 𝑊 ) |
30 |
12 1 2 3 5
|
atmod4i2 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑈 ∈ ( Base ‘ 𝐾 ) ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ) ∧ 𝑈 ≤ 𝑊 ) → ( ( 𝑃 ∧ 𝑊 ) ∨ 𝑈 ) = ( ( 𝑃 ∨ 𝑈 ) ∧ 𝑊 ) ) |
31 |
7 10 28 17 29 30
|
syl131anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑈 ≠ 𝑉 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) → ( ( 𝑃 ∧ 𝑊 ) ∨ 𝑈 ) = ( ( 𝑃 ∨ 𝑈 ) ∧ 𝑊 ) ) |
32 |
12 2 4
|
olj02 |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑈 ∈ ( Base ‘ 𝐾 ) ) → ( 0 ∨ 𝑈 ) = 𝑈 ) |
33 |
9 28 32
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑈 ≠ 𝑉 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) → ( 0 ∨ 𝑈 ) = 𝑈 ) |
34 |
26 31 33
|
3eqtr3d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑈 ≠ 𝑉 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) → ( ( 𝑃 ∨ 𝑈 ) ∧ 𝑊 ) = 𝑈 ) |
35 |
34
|
oveq1d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑈 ≠ 𝑉 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) → ( ( ( 𝑃 ∨ 𝑈 ) ∧ 𝑊 ) ∧ 𝑉 ) = ( 𝑈 ∧ 𝑉 ) ) |
36 |
22 35
|
eqtr3d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑈 ≠ 𝑉 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) → ( ( 𝑃 ∨ 𝑈 ) ∧ ( 𝑊 ∧ 𝑉 ) ) = ( 𝑈 ∧ 𝑉 ) ) |
37 |
|
simp3r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑈 ≠ 𝑉 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) → 𝑉 ≤ 𝑊 ) |
38 |
7
|
hllatd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑈 ≠ 𝑉 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) → 𝐾 ∈ Lat ) |
39 |
12 1 3
|
latleeqm2 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑉 ∈ ( Base ‘ 𝐾 ) ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑉 ≤ 𝑊 ↔ ( 𝑊 ∧ 𝑉 ) = 𝑉 ) ) |
40 |
38 20 17 39
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑈 ≠ 𝑉 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) → ( 𝑉 ≤ 𝑊 ↔ ( 𝑊 ∧ 𝑉 ) = 𝑉 ) ) |
41 |
37 40
|
mpbid |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑈 ≠ 𝑉 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) → ( 𝑊 ∧ 𝑉 ) = 𝑉 ) |
42 |
41
|
oveq2d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑈 ≠ 𝑉 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) → ( ( 𝑃 ∨ 𝑈 ) ∧ ( 𝑊 ∧ 𝑉 ) ) = ( ( 𝑃 ∨ 𝑈 ) ∧ 𝑉 ) ) |
43 |
|
simp13 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑈 ≠ 𝑉 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) → 𝑈 ≠ 𝑉 ) |
44 |
|
hlatl |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ AtLat ) |
45 |
7 44
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑈 ≠ 𝑉 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) → 𝐾 ∈ AtLat ) |
46 |
3 4 5
|
atnem0 |
⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ) → ( 𝑈 ≠ 𝑉 ↔ ( 𝑈 ∧ 𝑉 ) = 0 ) ) |
47 |
45 11 18 46
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑈 ≠ 𝑉 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) → ( 𝑈 ≠ 𝑉 ↔ ( 𝑈 ∧ 𝑉 ) = 0 ) ) |
48 |
43 47
|
mpbid |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑈 ≠ 𝑉 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) → ( 𝑈 ∧ 𝑉 ) = 0 ) |
49 |
36 42 48
|
3eqtr3d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑈 ≠ 𝑉 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) → ( ( 𝑃 ∨ 𝑈 ) ∧ 𝑉 ) = 0 ) |