Step |
Hyp |
Ref |
Expression |
1 |
|
lhp2at0nle.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
2 |
|
lhp2at0nle.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
3 |
|
lhp2at0nle.z |
⊢ 0 = ( 0. ‘ 𝐾 ) |
4 |
|
lhp2at0nle.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
5 |
|
lhp2at0nle.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
6 |
|
simp11 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑄 ∈ 𝐴 ) ∧ ( ( ( 𝑈 ∈ 𝐴 ∨ 𝑈 = 0 ) ∧ 𝑈 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ 𝑈 ≠ 𝑉 ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
7 |
|
simp12 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑄 ∈ 𝐴 ) ∧ ( ( ( 𝑈 ∈ 𝐴 ∨ 𝑈 = 0 ) ∧ 𝑈 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ 𝑈 ≠ 𝑉 ) → ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) |
8 |
|
simp3 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑄 ∈ 𝐴 ) ∧ ( ( ( 𝑈 ∈ 𝐴 ∨ 𝑈 = 0 ) ∧ 𝑈 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ 𝑈 ≠ 𝑉 ) → 𝑈 ≠ 𝑉 ) |
9 |
|
simp2l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑄 ∈ 𝐴 ) ∧ ( ( ( 𝑈 ∈ 𝐴 ∨ 𝑈 = 0 ) ∧ 𝑈 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ 𝑈 ≠ 𝑉 ) → ( ( 𝑈 ∈ 𝐴 ∨ 𝑈 = 0 ) ∧ 𝑈 ≤ 𝑊 ) ) |
10 |
|
simp2r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑄 ∈ 𝐴 ) ∧ ( ( ( 𝑈 ∈ 𝐴 ∨ 𝑈 = 0 ) ∧ 𝑈 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ 𝑈 ≠ 𝑉 ) → ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) |
11 |
1 2 3 4 5
|
lhp2at0nle |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑈 ≠ 𝑉 ) ∧ ( ( 𝑈 ∈ 𝐴 ∨ 𝑈 = 0 ) ∧ 𝑈 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) → ¬ 𝑉 ≤ ( 𝑃 ∨ 𝑈 ) ) |
12 |
6 7 8 9 10 11
|
syl311anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑄 ∈ 𝐴 ) ∧ ( ( ( 𝑈 ∈ 𝐴 ∨ 𝑈 = 0 ) ∧ 𝑈 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ 𝑈 ≠ 𝑉 ) → ¬ 𝑉 ≤ ( 𝑃 ∨ 𝑈 ) ) |
13 |
|
simp11l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑄 ∈ 𝐴 ) ∧ ( ( ( 𝑈 ∈ 𝐴 ∨ 𝑈 = 0 ) ∧ 𝑈 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ 𝑈 ≠ 𝑉 ) → 𝐾 ∈ HL ) |
14 |
|
simp13 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑄 ∈ 𝐴 ) ∧ ( ( ( 𝑈 ∈ 𝐴 ∨ 𝑈 = 0 ) ∧ 𝑈 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ 𝑈 ≠ 𝑉 ) → 𝑄 ∈ 𝐴 ) |
15 |
|
simp2rl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑄 ∈ 𝐴 ) ∧ ( ( ( 𝑈 ∈ 𝐴 ∨ 𝑈 = 0 ) ∧ 𝑈 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ 𝑈 ≠ 𝑉 ) → 𝑉 ∈ 𝐴 ) |
16 |
1 2 4
|
hlatlej2 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ) → 𝑉 ≤ ( 𝑄 ∨ 𝑉 ) ) |
17 |
13 14 15 16
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑄 ∈ 𝐴 ) ∧ ( ( ( 𝑈 ∈ 𝐴 ∨ 𝑈 = 0 ) ∧ 𝑈 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ 𝑈 ≠ 𝑉 ) → 𝑉 ≤ ( 𝑄 ∨ 𝑉 ) ) |
18 |
17
|
adantr |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑄 ∈ 𝐴 ) ∧ ( ( ( 𝑈 ∈ 𝐴 ∨ 𝑈 = 0 ) ∧ 𝑈 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ 𝑈 ≠ 𝑉 ) ∧ ( 𝑃 ∨ 𝑈 ) = ( 𝑄 ∨ 𝑉 ) ) → 𝑉 ≤ ( 𝑄 ∨ 𝑉 ) ) |
19 |
|
simpr |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑄 ∈ 𝐴 ) ∧ ( ( ( 𝑈 ∈ 𝐴 ∨ 𝑈 = 0 ) ∧ 𝑈 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ 𝑈 ≠ 𝑉 ) ∧ ( 𝑃 ∨ 𝑈 ) = ( 𝑄 ∨ 𝑉 ) ) → ( 𝑃 ∨ 𝑈 ) = ( 𝑄 ∨ 𝑉 ) ) |
20 |
18 19
|
breqtrrd |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑄 ∈ 𝐴 ) ∧ ( ( ( 𝑈 ∈ 𝐴 ∨ 𝑈 = 0 ) ∧ 𝑈 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ 𝑈 ≠ 𝑉 ) ∧ ( 𝑃 ∨ 𝑈 ) = ( 𝑄 ∨ 𝑉 ) ) → 𝑉 ≤ ( 𝑃 ∨ 𝑈 ) ) |
21 |
20
|
ex |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑄 ∈ 𝐴 ) ∧ ( ( ( 𝑈 ∈ 𝐴 ∨ 𝑈 = 0 ) ∧ 𝑈 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ 𝑈 ≠ 𝑉 ) → ( ( 𝑃 ∨ 𝑈 ) = ( 𝑄 ∨ 𝑉 ) → 𝑉 ≤ ( 𝑃 ∨ 𝑈 ) ) ) |
22 |
21
|
necon3bd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑄 ∈ 𝐴 ) ∧ ( ( ( 𝑈 ∈ 𝐴 ∨ 𝑈 = 0 ) ∧ 𝑈 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ 𝑈 ≠ 𝑉 ) → ( ¬ 𝑉 ≤ ( 𝑃 ∨ 𝑈 ) → ( 𝑃 ∨ 𝑈 ) ≠ ( 𝑄 ∨ 𝑉 ) ) ) |
23 |
12 22
|
mpd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑄 ∈ 𝐴 ) ∧ ( ( ( 𝑈 ∈ 𝐴 ∨ 𝑈 = 0 ) ∧ 𝑈 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ 𝑈 ≠ 𝑉 ) → ( 𝑃 ∨ 𝑈 ) ≠ ( 𝑄 ∨ 𝑉 ) ) |