Step |
Hyp |
Ref |
Expression |
1 |
|
lhp2atnle.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
2 |
|
lhp2atnle.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
3 |
|
lhp2atnle.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
4 |
|
lhp2atnle.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
5 |
|
simp11l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑈 ≠ 𝑉 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) → 𝐾 ∈ HL ) |
6 |
|
hlatl |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ AtLat ) |
7 |
5 6
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑈 ≠ 𝑉 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) → 𝐾 ∈ AtLat ) |
8 |
|
simp3l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑈 ≠ 𝑉 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) → 𝑉 ∈ 𝐴 ) |
9 |
|
eqid |
⊢ ( 0. ‘ 𝐾 ) = ( 0. ‘ 𝐾 ) |
10 |
9 3
|
atn0 |
⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑉 ∈ 𝐴 ) → 𝑉 ≠ ( 0. ‘ 𝐾 ) ) |
11 |
7 8 10
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑈 ≠ 𝑉 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) → 𝑉 ≠ ( 0. ‘ 𝐾 ) ) |
12 |
5
|
hllatd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑈 ≠ 𝑉 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) → 𝐾 ∈ Lat ) |
13 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
14 |
13 3
|
atbase |
⊢ ( 𝑉 ∈ 𝐴 → 𝑉 ∈ ( Base ‘ 𝐾 ) ) |
15 |
8 14
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑈 ≠ 𝑉 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) → 𝑉 ∈ ( Base ‘ 𝐾 ) ) |
16 |
|
simp12l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑈 ≠ 𝑉 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) → 𝑃 ∈ 𝐴 ) |
17 |
|
simp2l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑈 ≠ 𝑉 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) → 𝑈 ∈ 𝐴 ) |
18 |
13 2 3
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) → ( 𝑃 ∨ 𝑈 ) ∈ ( Base ‘ 𝐾 ) ) |
19 |
5 16 17 18
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑈 ≠ 𝑉 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) → ( 𝑃 ∨ 𝑈 ) ∈ ( Base ‘ 𝐾 ) ) |
20 |
|
eqid |
⊢ ( meet ‘ 𝐾 ) = ( meet ‘ 𝐾 ) |
21 |
13 1 20
|
latleeqm2 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑉 ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑃 ∨ 𝑈 ) ∈ ( Base ‘ 𝐾 ) ) → ( 𝑉 ≤ ( 𝑃 ∨ 𝑈 ) ↔ ( ( 𝑃 ∨ 𝑈 ) ( meet ‘ 𝐾 ) 𝑉 ) = 𝑉 ) ) |
22 |
12 15 19 21
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑈 ≠ 𝑉 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) → ( 𝑉 ≤ ( 𝑃 ∨ 𝑈 ) ↔ ( ( 𝑃 ∨ 𝑈 ) ( meet ‘ 𝐾 ) 𝑉 ) = 𝑉 ) ) |
23 |
1 2 20 9 3 4
|
lhp2at0 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑈 ≠ 𝑉 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) → ( ( 𝑃 ∨ 𝑈 ) ( meet ‘ 𝐾 ) 𝑉 ) = ( 0. ‘ 𝐾 ) ) |
24 |
|
eqeq1 |
⊢ ( ( ( 𝑃 ∨ 𝑈 ) ( meet ‘ 𝐾 ) 𝑉 ) = 𝑉 → ( ( ( 𝑃 ∨ 𝑈 ) ( meet ‘ 𝐾 ) 𝑉 ) = ( 0. ‘ 𝐾 ) ↔ 𝑉 = ( 0. ‘ 𝐾 ) ) ) |
25 |
23 24
|
syl5ibcom |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑈 ≠ 𝑉 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) → ( ( ( 𝑃 ∨ 𝑈 ) ( meet ‘ 𝐾 ) 𝑉 ) = 𝑉 → 𝑉 = ( 0. ‘ 𝐾 ) ) ) |
26 |
22 25
|
sylbid |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑈 ≠ 𝑉 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) → ( 𝑉 ≤ ( 𝑃 ∨ 𝑈 ) → 𝑉 = ( 0. ‘ 𝐾 ) ) ) |
27 |
26
|
necon3ad |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑈 ≠ 𝑉 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) → ( 𝑉 ≠ ( 0. ‘ 𝐾 ) → ¬ 𝑉 ≤ ( 𝑃 ∨ 𝑈 ) ) ) |
28 |
11 27
|
mpd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑈 ≠ 𝑉 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) → ¬ 𝑉 ≤ ( 𝑃 ∨ 𝑈 ) ) |