| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lhp2lt.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
| 2 |
|
lhp2lt.s |
⊢ < = ( lt ‘ 𝐾 ) |
| 3 |
|
lhp2lt.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
| 4 |
|
lhp2lt.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
| 5 |
|
lhp2lt.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 6 |
|
simp2r |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊 ) ) → 𝑃 ≤ 𝑊 ) |
| 7 |
|
simp3r |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊 ) ) → 𝑄 ≤ 𝑊 ) |
| 8 |
|
simp1l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊 ) ) → 𝐾 ∈ HL ) |
| 9 |
8
|
hllatd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊 ) ) → 𝐾 ∈ Lat ) |
| 10 |
|
simp2l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊 ) ) → 𝑃 ∈ 𝐴 ) |
| 11 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
| 12 |
11 4
|
atbase |
⊢ ( 𝑃 ∈ 𝐴 → 𝑃 ∈ ( Base ‘ 𝐾 ) ) |
| 13 |
10 12
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊 ) ) → 𝑃 ∈ ( Base ‘ 𝐾 ) ) |
| 14 |
|
simp3l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊 ) ) → 𝑄 ∈ 𝐴 ) |
| 15 |
11 4
|
atbase |
⊢ ( 𝑄 ∈ 𝐴 → 𝑄 ∈ ( Base ‘ 𝐾 ) ) |
| 16 |
14 15
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊 ) ) → 𝑄 ∈ ( Base ‘ 𝐾 ) ) |
| 17 |
|
simp1r |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊 ) ) → 𝑊 ∈ 𝐻 ) |
| 18 |
11 5
|
lhpbase |
⊢ ( 𝑊 ∈ 𝐻 → 𝑊 ∈ ( Base ‘ 𝐾 ) ) |
| 19 |
17 18
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊 ) ) → 𝑊 ∈ ( Base ‘ 𝐾 ) ) |
| 20 |
11 1 3
|
latjle12 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑃 ∈ ( Base ‘ 𝐾 ) ∧ 𝑄 ∈ ( Base ‘ 𝐾 ) ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ) ) → ( ( 𝑃 ≤ 𝑊 ∧ 𝑄 ≤ 𝑊 ) ↔ ( 𝑃 ∨ 𝑄 ) ≤ 𝑊 ) ) |
| 21 |
9 13 16 19 20
|
syl13anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊 ) ) → ( ( 𝑃 ≤ 𝑊 ∧ 𝑄 ≤ 𝑊 ) ↔ ( 𝑃 ∨ 𝑄 ) ≤ 𝑊 ) ) |
| 22 |
6 7 21
|
mpbi2and |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊 ) ) → ( 𝑃 ∨ 𝑄 ) ≤ 𝑊 ) |
| 23 |
3 1 4
|
3dim2 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) → ∃ 𝑟 ∈ 𝐴 ∃ 𝑠 ∈ 𝐴 ( ¬ 𝑟 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑠 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑟 ) ) ) |
| 24 |
8 10 14 23
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊 ) ) → ∃ 𝑟 ∈ 𝐴 ∃ 𝑠 ∈ 𝐴 ( ¬ 𝑟 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑠 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑟 ) ) ) |
| 25 |
|
simp11l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ∧ ( ¬ 𝑟 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑠 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑟 ) ) ) → 𝐾 ∈ HL ) |
| 26 |
|
hlop |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ OP ) |
| 27 |
25 26
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ∧ ( ¬ 𝑟 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑠 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑟 ) ) ) → 𝐾 ∈ OP ) |
| 28 |
25
|
hllatd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ∧ ( ¬ 𝑟 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑠 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑟 ) ) ) → 𝐾 ∈ Lat ) |
| 29 |
|
simp12l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ∧ ( ¬ 𝑟 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑠 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑟 ) ) ) → 𝑃 ∈ 𝐴 ) |
| 30 |
|
simp13l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ∧ ( ¬ 𝑟 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑠 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑟 ) ) ) → 𝑄 ∈ 𝐴 ) |
| 31 |
11 3 4
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) → ( 𝑃 ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ) |
| 32 |
25 29 30 31
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ∧ ( ¬ 𝑟 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑠 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑟 ) ) ) → ( 𝑃 ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ) |
| 33 |
|
simp2l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ∧ ( ¬ 𝑟 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑠 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑟 ) ) ) → 𝑟 ∈ 𝐴 ) |
| 34 |
11 4
|
atbase |
⊢ ( 𝑟 ∈ 𝐴 → 𝑟 ∈ ( Base ‘ 𝐾 ) ) |
| 35 |
33 34
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ∧ ( ¬ 𝑟 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑠 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑟 ) ) ) → 𝑟 ∈ ( Base ‘ 𝐾 ) ) |
| 36 |
11 3
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑃 ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑟 ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑟 ) ∈ ( Base ‘ 𝐾 ) ) |
| 37 |
28 32 35 36
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ∧ ( ¬ 𝑟 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑠 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑟 ) ) ) → ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑟 ) ∈ ( Base ‘ 𝐾 ) ) |
| 38 |
|
simp2r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ∧ ( ¬ 𝑟 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑠 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑟 ) ) ) → 𝑠 ∈ 𝐴 ) |
| 39 |
11 4
|
atbase |
⊢ ( 𝑠 ∈ 𝐴 → 𝑠 ∈ ( Base ‘ 𝐾 ) ) |
| 40 |
38 39
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ∧ ( ¬ 𝑟 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑠 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑟 ) ) ) → 𝑠 ∈ ( Base ‘ 𝐾 ) ) |
| 41 |
11 3
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑟 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑠 ∈ ( Base ‘ 𝐾 ) ) → ( ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑟 ) ∨ 𝑠 ) ∈ ( Base ‘ 𝐾 ) ) |
| 42 |
28 37 40 41
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ∧ ( ¬ 𝑟 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑠 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑟 ) ) ) → ( ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑟 ) ∨ 𝑠 ) ∈ ( Base ‘ 𝐾 ) ) |
| 43 |
|
eqid |
⊢ ( 1. ‘ 𝐾 ) = ( 1. ‘ 𝐾 ) |
| 44 |
|
eqid |
⊢ ( ⋖ ‘ 𝐾 ) = ( ⋖ ‘ 𝐾 ) |
| 45 |
11 43 44
|
ncvr1 |
⊢ ( ( 𝐾 ∈ OP ∧ ( ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑟 ) ∨ 𝑠 ) ∈ ( Base ‘ 𝐾 ) ) → ¬ ( 1. ‘ 𝐾 ) ( ⋖ ‘ 𝐾 ) ( ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑟 ) ∨ 𝑠 ) ) |
| 46 |
27 42 45
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ∧ ( ¬ 𝑟 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑠 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑟 ) ) ) → ¬ ( 1. ‘ 𝐾 ) ( ⋖ ‘ 𝐾 ) ( ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑟 ) ∨ 𝑠 ) ) |
| 47 |
|
eqid |
⊢ ( lub ‘ 𝐾 ) = ( lub ‘ 𝐾 ) |
| 48 |
|
simpl1l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ∧ ( ¬ 𝑟 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑠 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑟 ) ) ∧ ( 𝑃 ∨ 𝑄 ) = 𝑊 ) ) → 𝐾 ∈ HL ) |
| 49 |
48
|
hllatd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ∧ ( ¬ 𝑟 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑠 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑟 ) ) ∧ ( 𝑃 ∨ 𝑄 ) = 𝑊 ) ) → 𝐾 ∈ Lat ) |
| 50 |
|
simpl2l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ∧ ( ¬ 𝑟 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑠 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑟 ) ) ∧ ( 𝑃 ∨ 𝑄 ) = 𝑊 ) ) → 𝑃 ∈ 𝐴 ) |
| 51 |
|
simpl3l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ∧ ( ¬ 𝑟 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑠 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑟 ) ) ∧ ( 𝑃 ∨ 𝑄 ) = 𝑊 ) ) → 𝑄 ∈ 𝐴 ) |
| 52 |
48 50 51 31
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ∧ ( ¬ 𝑟 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑠 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑟 ) ) ∧ ( 𝑃 ∨ 𝑄 ) = 𝑊 ) ) → ( 𝑃 ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ) |
| 53 |
|
simpr1l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ∧ ( ¬ 𝑟 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑠 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑟 ) ) ∧ ( 𝑃 ∨ 𝑄 ) = 𝑊 ) ) → 𝑟 ∈ 𝐴 ) |
| 54 |
53 34
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ∧ ( ¬ 𝑟 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑠 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑟 ) ) ∧ ( 𝑃 ∨ 𝑄 ) = 𝑊 ) ) → 𝑟 ∈ ( Base ‘ 𝐾 ) ) |
| 55 |
49 52 54 36
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ∧ ( ¬ 𝑟 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑠 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑟 ) ) ∧ ( 𝑃 ∨ 𝑄 ) = 𝑊 ) ) → ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑟 ) ∈ ( Base ‘ 𝐾 ) ) |
| 56 |
48 26
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ∧ ( ¬ 𝑟 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑠 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑟 ) ) ∧ ( 𝑃 ∨ 𝑄 ) = 𝑊 ) ) → 𝐾 ∈ OP ) |
| 57 |
|
eqid |
⊢ ( glb ‘ 𝐾 ) = ( glb ‘ 𝐾 ) |
| 58 |
11 47 57
|
op01dm |
⊢ ( 𝐾 ∈ OP → ( ( Base ‘ 𝐾 ) ∈ dom ( lub ‘ 𝐾 ) ∧ ( Base ‘ 𝐾 ) ∈ dom ( glb ‘ 𝐾 ) ) ) |
| 59 |
58
|
simpld |
⊢ ( 𝐾 ∈ OP → ( Base ‘ 𝐾 ) ∈ dom ( lub ‘ 𝐾 ) ) |
| 60 |
56 59
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ∧ ( ¬ 𝑟 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑠 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑟 ) ) ∧ ( 𝑃 ∨ 𝑄 ) = 𝑊 ) ) → ( Base ‘ 𝐾 ) ∈ dom ( lub ‘ 𝐾 ) ) |
| 61 |
11 47 1 43 48 55 60
|
ple1 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ∧ ( ¬ 𝑟 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑠 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑟 ) ) ∧ ( 𝑃 ∨ 𝑄 ) = 𝑊 ) ) → ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑟 ) ≤ ( 1. ‘ 𝐾 ) ) |
| 62 |
|
hlpos |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ Poset ) |
| 63 |
48 62
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ∧ ( ¬ 𝑟 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑠 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑟 ) ) ∧ ( 𝑃 ∨ 𝑄 ) = 𝑊 ) ) → 𝐾 ∈ Poset ) |
| 64 |
11 43
|
op1cl |
⊢ ( 𝐾 ∈ OP → ( 1. ‘ 𝐾 ) ∈ ( Base ‘ 𝐾 ) ) |
| 65 |
56 64
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ∧ ( ¬ 𝑟 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑠 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑟 ) ) ∧ ( 𝑃 ∨ 𝑄 ) = 𝑊 ) ) → ( 1. ‘ 𝐾 ) ∈ ( Base ‘ 𝐾 ) ) |
| 66 |
|
simpr2l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ∧ ( ¬ 𝑟 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑠 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑟 ) ) ∧ ( 𝑃 ∨ 𝑄 ) = 𝑊 ) ) → ¬ 𝑟 ≤ ( 𝑃 ∨ 𝑄 ) ) |
| 67 |
11 1 3 44 4
|
cvr1 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑟 ∈ 𝐴 ) → ( ¬ 𝑟 ≤ ( 𝑃 ∨ 𝑄 ) ↔ ( 𝑃 ∨ 𝑄 ) ( ⋖ ‘ 𝐾 ) ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑟 ) ) ) |
| 68 |
48 52 53 67
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ∧ ( ¬ 𝑟 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑠 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑟 ) ) ∧ ( 𝑃 ∨ 𝑄 ) = 𝑊 ) ) → ( ¬ 𝑟 ≤ ( 𝑃 ∨ 𝑄 ) ↔ ( 𝑃 ∨ 𝑄 ) ( ⋖ ‘ 𝐾 ) ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑟 ) ) ) |
| 69 |
66 68
|
mpbid |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ∧ ( ¬ 𝑟 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑠 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑟 ) ) ∧ ( 𝑃 ∨ 𝑄 ) = 𝑊 ) ) → ( 𝑃 ∨ 𝑄 ) ( ⋖ ‘ 𝐾 ) ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑟 ) ) |
| 70 |
|
simpr3 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ∧ ( ¬ 𝑟 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑠 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑟 ) ) ∧ ( 𝑃 ∨ 𝑄 ) = 𝑊 ) ) → ( 𝑃 ∨ 𝑄 ) = 𝑊 ) |
| 71 |
|
simpl1r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ∧ ( ¬ 𝑟 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑠 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑟 ) ) ∧ ( 𝑃 ∨ 𝑄 ) = 𝑊 ) ) → 𝑊 ∈ 𝐻 ) |
| 72 |
43 44 5
|
lhp1cvr |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → 𝑊 ( ⋖ ‘ 𝐾 ) ( 1. ‘ 𝐾 ) ) |
| 73 |
48 71 72
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ∧ ( ¬ 𝑟 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑠 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑟 ) ) ∧ ( 𝑃 ∨ 𝑄 ) = 𝑊 ) ) → 𝑊 ( ⋖ ‘ 𝐾 ) ( 1. ‘ 𝐾 ) ) |
| 74 |
70 73
|
eqbrtrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ∧ ( ¬ 𝑟 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑠 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑟 ) ) ∧ ( 𝑃 ∨ 𝑄 ) = 𝑊 ) ) → ( 𝑃 ∨ 𝑄 ) ( ⋖ ‘ 𝐾 ) ( 1. ‘ 𝐾 ) ) |
| 75 |
11 1 44
|
cvrcmp |
⊢ ( ( 𝐾 ∈ Poset ∧ ( ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑟 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 1. ‘ 𝐾 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑃 ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ) ∧ ( ( 𝑃 ∨ 𝑄 ) ( ⋖ ‘ 𝐾 ) ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑟 ) ∧ ( 𝑃 ∨ 𝑄 ) ( ⋖ ‘ 𝐾 ) ( 1. ‘ 𝐾 ) ) ) → ( ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑟 ) ≤ ( 1. ‘ 𝐾 ) ↔ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑟 ) = ( 1. ‘ 𝐾 ) ) ) |
| 76 |
63 55 65 52 69 74 75
|
syl132anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ∧ ( ¬ 𝑟 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑠 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑟 ) ) ∧ ( 𝑃 ∨ 𝑄 ) = 𝑊 ) ) → ( ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑟 ) ≤ ( 1. ‘ 𝐾 ) ↔ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑟 ) = ( 1. ‘ 𝐾 ) ) ) |
| 77 |
61 76
|
mpbid |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ∧ ( ¬ 𝑟 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑠 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑟 ) ) ∧ ( 𝑃 ∨ 𝑄 ) = 𝑊 ) ) → ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑟 ) = ( 1. ‘ 𝐾 ) ) |
| 78 |
|
simpr2r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ∧ ( ¬ 𝑟 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑠 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑟 ) ) ∧ ( 𝑃 ∨ 𝑄 ) = 𝑊 ) ) → ¬ 𝑠 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑟 ) ) |
| 79 |
|
simpr1r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ∧ ( ¬ 𝑟 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑠 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑟 ) ) ∧ ( 𝑃 ∨ 𝑄 ) = 𝑊 ) ) → 𝑠 ∈ 𝐴 ) |
| 80 |
11 1 3 44 4
|
cvr1 |
⊢ ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑟 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑠 ∈ 𝐴 ) → ( ¬ 𝑠 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑟 ) ↔ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑟 ) ( ⋖ ‘ 𝐾 ) ( ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑟 ) ∨ 𝑠 ) ) ) |
| 81 |
48 55 79 80
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ∧ ( ¬ 𝑟 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑠 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑟 ) ) ∧ ( 𝑃 ∨ 𝑄 ) = 𝑊 ) ) → ( ¬ 𝑠 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑟 ) ↔ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑟 ) ( ⋖ ‘ 𝐾 ) ( ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑟 ) ∨ 𝑠 ) ) ) |
| 82 |
78 81
|
mpbid |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ∧ ( ¬ 𝑟 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑠 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑟 ) ) ∧ ( 𝑃 ∨ 𝑄 ) = 𝑊 ) ) → ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑟 ) ( ⋖ ‘ 𝐾 ) ( ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑟 ) ∨ 𝑠 ) ) |
| 83 |
77 82
|
eqbrtrrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ∧ ( ¬ 𝑟 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑠 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑟 ) ) ∧ ( 𝑃 ∨ 𝑄 ) = 𝑊 ) ) → ( 1. ‘ 𝐾 ) ( ⋖ ‘ 𝐾 ) ( ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑟 ) ∨ 𝑠 ) ) |
| 84 |
83
|
3exp2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊 ) ) → ( ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) → ( ( ¬ 𝑟 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑠 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑟 ) ) → ( ( 𝑃 ∨ 𝑄 ) = 𝑊 → ( 1. ‘ 𝐾 ) ( ⋖ ‘ 𝐾 ) ( ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑟 ) ∨ 𝑠 ) ) ) ) ) |
| 85 |
84
|
3imp |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ∧ ( ¬ 𝑟 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑠 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑟 ) ) ) → ( ( 𝑃 ∨ 𝑄 ) = 𝑊 → ( 1. ‘ 𝐾 ) ( ⋖ ‘ 𝐾 ) ( ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑟 ) ∨ 𝑠 ) ) ) |
| 86 |
85
|
necon3bd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ∧ ( ¬ 𝑟 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑠 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑟 ) ) ) → ( ¬ ( 1. ‘ 𝐾 ) ( ⋖ ‘ 𝐾 ) ( ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑟 ) ∨ 𝑠 ) → ( 𝑃 ∨ 𝑄 ) ≠ 𝑊 ) ) |
| 87 |
46 86
|
mpd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ∧ ( ¬ 𝑟 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑠 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑟 ) ) ) → ( 𝑃 ∨ 𝑄 ) ≠ 𝑊 ) |
| 88 |
87
|
3exp |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊 ) ) → ( ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) → ( ( ¬ 𝑟 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑠 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑟 ) ) → ( 𝑃 ∨ 𝑄 ) ≠ 𝑊 ) ) ) |
| 89 |
88
|
rexlimdvv |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊 ) ) → ( ∃ 𝑟 ∈ 𝐴 ∃ 𝑠 ∈ 𝐴 ( ¬ 𝑟 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑠 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑟 ) ) → ( 𝑃 ∨ 𝑄 ) ≠ 𝑊 ) ) |
| 90 |
24 89
|
mpd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊 ) ) → ( 𝑃 ∨ 𝑄 ) ≠ 𝑊 ) |
| 91 |
8 10 14 31
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊 ) ) → ( 𝑃 ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ) |
| 92 |
1 2
|
pltval |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑊 ∈ 𝐻 ) → ( ( 𝑃 ∨ 𝑄 ) < 𝑊 ↔ ( ( 𝑃 ∨ 𝑄 ) ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑄 ) ≠ 𝑊 ) ) ) |
| 93 |
8 91 17 92
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊 ) ) → ( ( 𝑃 ∨ 𝑄 ) < 𝑊 ↔ ( ( 𝑃 ∨ 𝑄 ) ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑄 ) ≠ 𝑊 ) ) ) |
| 94 |
22 90 93
|
mpbir2and |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊 ) ) → ( 𝑃 ∨ 𝑄 ) < 𝑊 ) |