| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lhpat.l | ⊢  ≤   =  ( le ‘ 𝐾 ) | 
						
							| 2 |  | lhpat.j | ⊢  ∨   =  ( join ‘ 𝐾 ) | 
						
							| 3 |  | lhpat.m | ⊢  ∧   =  ( meet ‘ 𝐾 ) | 
						
							| 4 |  | lhpat.a | ⊢ 𝐴  =  ( Atoms ‘ 𝐾 ) | 
						
							| 5 |  | lhpat.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 6 |  | simp1l | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  𝑃  ≠  𝑄 ) )  →  𝐾  ∈  HL ) | 
						
							| 7 |  | simp2l | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  𝑃  ≠  𝑄 ) )  →  𝑃  ∈  𝐴 ) | 
						
							| 8 |  | simp3l | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  𝑃  ≠  𝑄 ) )  →  𝑄  ∈  𝐴 ) | 
						
							| 9 |  | simp1r | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  𝑃  ≠  𝑄 ) )  →  𝑊  ∈  𝐻 ) | 
						
							| 10 |  | eqid | ⊢ ( Base ‘ 𝐾 )  =  ( Base ‘ 𝐾 ) | 
						
							| 11 | 10 5 | lhpbase | ⊢ ( 𝑊  ∈  𝐻  →  𝑊  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 12 | 9 11 | syl | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  𝑃  ≠  𝑄 ) )  →  𝑊  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 13 |  | simp3r | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  𝑃  ≠  𝑄 ) )  →  𝑃  ≠  𝑄 ) | 
						
							| 14 |  | eqid | ⊢ ( 1. ‘ 𝐾 )  =  ( 1. ‘ 𝐾 ) | 
						
							| 15 |  | eqid | ⊢ (  ⋖  ‘ 𝐾 )  =  (  ⋖  ‘ 𝐾 ) | 
						
							| 16 | 14 15 5 | lhp1cvr | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  →  𝑊 (  ⋖  ‘ 𝐾 ) ( 1. ‘ 𝐾 ) ) | 
						
							| 17 | 16 | 3ad2ant1 | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  𝑃  ≠  𝑄 ) )  →  𝑊 (  ⋖  ‘ 𝐾 ) ( 1. ‘ 𝐾 ) ) | 
						
							| 18 |  | simp2r | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  𝑃  ≠  𝑄 ) )  →  ¬  𝑃  ≤  𝑊 ) | 
						
							| 19 | 10 1 2 3 14 15 4 | 1cvrat | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑊  ∈  ( Base ‘ 𝐾 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑊 (  ⋖  ‘ 𝐾 ) ( 1. ‘ 𝐾 )  ∧  ¬  𝑃  ≤  𝑊 ) )  →  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 )  ∈  𝐴 ) | 
						
							| 20 | 6 7 8 12 13 17 18 19 | syl133anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  𝑃  ≠  𝑄 ) )  →  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 )  ∈  𝐴 ) |