| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lhpat.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
| 2 |
|
lhpat.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
| 3 |
|
lhpat.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
| 4 |
|
lhpat.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
| 5 |
|
lhpat.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 6 |
|
simp1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 7 |
|
simp2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊 ) ) → ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) |
| 8 |
|
simp3l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊 ) ) → 𝑈 ∈ 𝐴 ) |
| 9 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
| 10 |
9 4
|
atbase |
⊢ ( 𝑈 ∈ 𝐴 → 𝑈 ∈ ( Base ‘ 𝐾 ) ) |
| 11 |
8 10
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊 ) ) → 𝑈 ∈ ( Base ‘ 𝐾 ) ) |
| 12 |
|
simp3r |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊 ) ) → 𝑈 ≤ 𝑊 ) |
| 13 |
9 1 2 3 4 5
|
lhple |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑈 ∈ ( Base ‘ 𝐾 ) ∧ 𝑈 ≤ 𝑊 ) ) → ( ( 𝑃 ∨ 𝑈 ) ∧ 𝑊 ) = 𝑈 ) |
| 14 |
6 7 11 12 13
|
syl112anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊 ) ) → ( ( 𝑃 ∨ 𝑈 ) ∧ 𝑊 ) = 𝑈 ) |