| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lhp2a.l | ⊢  ≤   =  ( le ‘ 𝐾 ) | 
						
							| 2 |  | lhp2a.a | ⊢ 𝐴  =  ( Atoms ‘ 𝐾 ) | 
						
							| 3 |  | lhp2a.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 4 |  | simpl | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  →  𝐾  ∈  HL ) | 
						
							| 5 |  | eqid | ⊢ ( Base ‘ 𝐾 )  =  ( Base ‘ 𝐾 ) | 
						
							| 6 | 5 3 | lhpbase | ⊢ ( 𝑊  ∈  𝐻  →  𝑊  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 7 | 6 | adantl | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  →  𝑊  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 8 |  | eqid | ⊢ ( 0. ‘ 𝐾 )  =  ( 0. ‘ 𝐾 ) | 
						
							| 9 | 8 3 | lhpn0 | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  →  𝑊  ≠  ( 0. ‘ 𝐾 ) ) | 
						
							| 10 | 5 1 8 2 | atle | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  ( Base ‘ 𝐾 )  ∧  𝑊  ≠  ( 0. ‘ 𝐾 ) )  →  ∃ 𝑝  ∈  𝐴 𝑝  ≤  𝑊 ) | 
						
							| 11 | 4 7 9 10 | syl3anc | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  →  ∃ 𝑝  ∈  𝐴 𝑝  ≤  𝑊 ) |