Metamath Proof Explorer


Theorem lhpexle1lem

Description: Lemma for lhpexle1 and others that eliminates restrictions on X . (Contributed by NM, 24-Jul-2013)

Ref Expression
Hypotheses lhpexle1lem.1 ( 𝜑 → ∃ 𝑝𝐴 ( 𝑝 𝑊𝜓 ) )
lhpexle1lem.2 ( ( 𝜑 ∧ ( 𝑋𝐴𝑋 𝑊 ) ) → ∃ 𝑝𝐴 ( 𝑝 𝑊𝜓𝑝𝑋 ) )
Assertion lhpexle1lem ( 𝜑 → ∃ 𝑝𝐴 ( 𝑝 𝑊𝜓𝑝𝑋 ) )

Proof

Step Hyp Ref Expression
1 lhpexle1lem.1 ( 𝜑 → ∃ 𝑝𝐴 ( 𝑝 𝑊𝜓 ) )
2 lhpexle1lem.2 ( ( 𝜑 ∧ ( 𝑋𝐴𝑋 𝑊 ) ) → ∃ 𝑝𝐴 ( 𝑝 𝑊𝜓𝑝𝑋 ) )
3 1 adantr ( ( 𝜑 ∧ ¬ 𝑋𝐴 ) → ∃ 𝑝𝐴 ( 𝑝 𝑊𝜓 ) )
4 simprl ( ( ( ( 𝜑 ∧ ¬ 𝑋𝐴 ) ∧ 𝑝𝐴 ) ∧ ( 𝑝 𝑊𝜓 ) ) → 𝑝 𝑊 )
5 simprr ( ( ( ( 𝜑 ∧ ¬ 𝑋𝐴 ) ∧ 𝑝𝐴 ) ∧ ( 𝑝 𝑊𝜓 ) ) → 𝜓 )
6 simplr ( ( ( ( 𝜑 ∧ ¬ 𝑋𝐴 ) ∧ 𝑝𝐴 ) ∧ ( 𝑝 𝑊𝜓 ) ) → 𝑝𝐴 )
7 simpllr ( ( ( ( 𝜑 ∧ ¬ 𝑋𝐴 ) ∧ 𝑝𝐴 ) ∧ ( 𝑝 𝑊𝜓 ) ) → ¬ 𝑋𝐴 )
8 nelne2 ( ( 𝑝𝐴 ∧ ¬ 𝑋𝐴 ) → 𝑝𝑋 )
9 6 7 8 syl2anc ( ( ( ( 𝜑 ∧ ¬ 𝑋𝐴 ) ∧ 𝑝𝐴 ) ∧ ( 𝑝 𝑊𝜓 ) ) → 𝑝𝑋 )
10 4 5 9 3jca ( ( ( ( 𝜑 ∧ ¬ 𝑋𝐴 ) ∧ 𝑝𝐴 ) ∧ ( 𝑝 𝑊𝜓 ) ) → ( 𝑝 𝑊𝜓𝑝𝑋 ) )
11 10 ex ( ( ( 𝜑 ∧ ¬ 𝑋𝐴 ) ∧ 𝑝𝐴 ) → ( ( 𝑝 𝑊𝜓 ) → ( 𝑝 𝑊𝜓𝑝𝑋 ) ) )
12 11 reximdva ( ( 𝜑 ∧ ¬ 𝑋𝐴 ) → ( ∃ 𝑝𝐴 ( 𝑝 𝑊𝜓 ) → ∃ 𝑝𝐴 ( 𝑝 𝑊𝜓𝑝𝑋 ) ) )
13 3 12 mpd ( ( 𝜑 ∧ ¬ 𝑋𝐴 ) → ∃ 𝑝𝐴 ( 𝑝 𝑊𝜓𝑝𝑋 ) )
14 1 adantr ( ( 𝜑 ∧ ¬ 𝑋 𝑊 ) → ∃ 𝑝𝐴 ( 𝑝 𝑊𝜓 ) )
15 simprl ( ( ( 𝜑 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑝 𝑊𝜓 ) ) → 𝑝 𝑊 )
16 simprr ( ( ( 𝜑 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑝 𝑊𝜓 ) ) → 𝜓 )
17 simplr ( ( ( 𝜑 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑝 𝑊𝜓 ) ) → ¬ 𝑋 𝑊 )
18 nbrne2 ( ( 𝑝 𝑊 ∧ ¬ 𝑋 𝑊 ) → 𝑝𝑋 )
19 15 17 18 syl2anc ( ( ( 𝜑 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑝 𝑊𝜓 ) ) → 𝑝𝑋 )
20 15 16 19 3jca ( ( ( 𝜑 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑝 𝑊𝜓 ) ) → ( 𝑝 𝑊𝜓𝑝𝑋 ) )
21 20 ex ( ( 𝜑 ∧ ¬ 𝑋 𝑊 ) → ( ( 𝑝 𝑊𝜓 ) → ( 𝑝 𝑊𝜓𝑝𝑋 ) ) )
22 21 reximdv ( ( 𝜑 ∧ ¬ 𝑋 𝑊 ) → ( ∃ 𝑝𝐴 ( 𝑝 𝑊𝜓 ) → ∃ 𝑝𝐴 ( 𝑝 𝑊𝜓𝑝𝑋 ) ) )
23 14 22 mpd ( ( 𝜑 ∧ ¬ 𝑋 𝑊 ) → ∃ 𝑝𝐴 ( 𝑝 𝑊𝜓𝑝𝑋 ) )
24 13 23 2 pm2.61dda ( 𝜑 → ∃ 𝑝𝐴 ( 𝑝 𝑊𝜓𝑝𝑋 ) )