Metamath Proof Explorer


Theorem lhpexle2

Description: There exists atom under a co-atom different from any two other elements. (Contributed by NM, 24-Jul-2013)

Ref Expression
Hypotheses lhpex1.l = ( le ‘ 𝐾 )
lhpex1.a 𝐴 = ( Atoms ‘ 𝐾 )
lhpex1.h 𝐻 = ( LHyp ‘ 𝐾 )
Assertion lhpexle2 ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ∃ 𝑝𝐴 ( 𝑝 𝑊𝑝𝑋𝑝𝑌 ) )

Proof

Step Hyp Ref Expression
1 lhpex1.l = ( le ‘ 𝐾 )
2 lhpex1.a 𝐴 = ( Atoms ‘ 𝐾 )
3 lhpex1.h 𝐻 = ( LHyp ‘ 𝐾 )
4 1 2 3 lhpexle1 ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ∃ 𝑝𝐴 ( 𝑝 𝑊𝑝𝑋 ) )
5 1 2 3 lhpexle1 ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ∃ 𝑝𝐴 ( 𝑝 𝑊𝑝𝑌 ) )
6 5 adantr ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑌𝐴𝑌 𝑊 ) ) → ∃ 𝑝𝐴 ( 𝑝 𝑊𝑝𝑌 ) )
7 1 2 3 lhpexle2lem ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑌𝐴𝑌 𝑊 ) ∧ ( 𝑋𝐴𝑋 𝑊 ) ) → ∃ 𝑝𝐴 ( 𝑝 𝑊𝑝𝑌𝑝𝑋 ) )
8 7 3expa ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑌𝐴𝑌 𝑊 ) ) ∧ ( 𝑋𝐴𝑋 𝑊 ) ) → ∃ 𝑝𝐴 ( 𝑝 𝑊𝑝𝑌𝑝𝑋 ) )
9 6 8 lhpexle1lem ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑌𝐴𝑌 𝑊 ) ) → ∃ 𝑝𝐴 ( 𝑝 𝑊𝑝𝑌𝑝𝑋 ) )
10 3ancomb ( ( 𝑝 𝑊𝑝𝑌𝑝𝑋 ) ↔ ( 𝑝 𝑊𝑝𝑋𝑝𝑌 ) )
11 10 rexbii ( ∃ 𝑝𝐴 ( 𝑝 𝑊𝑝𝑌𝑝𝑋 ) ↔ ∃ 𝑝𝐴 ( 𝑝 𝑊𝑝𝑋𝑝𝑌 ) )
12 9 11 sylib ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑌𝐴𝑌 𝑊 ) ) → ∃ 𝑝𝐴 ( 𝑝 𝑊𝑝𝑋𝑝𝑌 ) )
13 4 12 lhpexle1lem ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ∃ 𝑝𝐴 ( 𝑝 𝑊𝑝𝑋𝑝𝑌 ) )