| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lhp2a.l | ⊢  ≤   =  ( le ‘ 𝐾 ) | 
						
							| 2 |  | lhp2a.a | ⊢ 𝐴  =  ( Atoms ‘ 𝐾 ) | 
						
							| 3 |  | lhp2a.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 4 |  | eqid | ⊢ ( 1. ‘ 𝐾 )  =  ( 1. ‘ 𝐾 ) | 
						
							| 5 |  | eqid | ⊢ (  ⋖  ‘ 𝐾 )  =  (  ⋖  ‘ 𝐾 ) | 
						
							| 6 | 4 5 3 | lhp1cvr | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  →  𝑊 (  ⋖  ‘ 𝐾 ) ( 1. ‘ 𝐾 ) ) | 
						
							| 7 |  | simpl | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  →  𝐾  ∈  HL ) | 
						
							| 8 |  | eqid | ⊢ ( Base ‘ 𝐾 )  =  ( Base ‘ 𝐾 ) | 
						
							| 9 | 8 3 | lhpbase | ⊢ ( 𝑊  ∈  𝐻  →  𝑊  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 10 | 9 | adantl | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  →  𝑊  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 11 |  | hlop | ⊢ ( 𝐾  ∈  HL  →  𝐾  ∈  OP ) | 
						
							| 12 | 8 4 | op1cl | ⊢ ( 𝐾  ∈  OP  →  ( 1. ‘ 𝐾 )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 13 | 11 12 | syl | ⊢ ( 𝐾  ∈  HL  →  ( 1. ‘ 𝐾 )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 14 | 13 | adantr | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  →  ( 1. ‘ 𝐾 )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 15 |  | eqid | ⊢ ( join ‘ 𝐾 )  =  ( join ‘ 𝐾 ) | 
						
							| 16 | 8 1 15 5 2 | cvrval3 | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  ( Base ‘ 𝐾 )  ∧  ( 1. ‘ 𝐾 )  ∈  ( Base ‘ 𝐾 ) )  →  ( 𝑊 (  ⋖  ‘ 𝐾 ) ( 1. ‘ 𝐾 )  ↔  ∃ 𝑝  ∈  𝐴 ( ¬  𝑝  ≤  𝑊  ∧  ( 𝑊 ( join ‘ 𝐾 ) 𝑝 )  =  ( 1. ‘ 𝐾 ) ) ) ) | 
						
							| 17 | 7 10 14 16 | syl3anc | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  →  ( 𝑊 (  ⋖  ‘ 𝐾 ) ( 1. ‘ 𝐾 )  ↔  ∃ 𝑝  ∈  𝐴 ( ¬  𝑝  ≤  𝑊  ∧  ( 𝑊 ( join ‘ 𝐾 ) 𝑝 )  =  ( 1. ‘ 𝐾 ) ) ) ) | 
						
							| 18 | 6 17 | mpbid | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  →  ∃ 𝑝  ∈  𝐴 ( ¬  𝑝  ≤  𝑊  ∧  ( 𝑊 ( join ‘ 𝐾 ) 𝑝 )  =  ( 1. ‘ 𝐾 ) ) ) | 
						
							| 19 |  | simpl | ⊢ ( ( ¬  𝑝  ≤  𝑊  ∧  ( 𝑊 ( join ‘ 𝐾 ) 𝑝 )  =  ( 1. ‘ 𝐾 ) )  →  ¬  𝑝  ≤  𝑊 ) | 
						
							| 20 | 19 | reximi | ⊢ ( ∃ 𝑝  ∈  𝐴 ( ¬  𝑝  ≤  𝑊  ∧  ( 𝑊 ( join ‘ 𝐾 ) 𝑝 )  =  ( 1. ‘ 𝐾 ) )  →  ∃ 𝑝  ∈  𝐴 ¬  𝑝  ≤  𝑊 ) | 
						
							| 21 | 18 20 | syl | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  →  ∃ 𝑝  ∈  𝐴 ¬  𝑝  ≤  𝑊 ) |